Skip to main content

Advertisement

Log in

Secrecy performance analysis of cell-free massive MIMO in the presence of active eavesdropper with low resolution ADCs

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates the secrecy performance of the Cell-Free massive multiple-input multiple-output network with finite resolution analog-to-digital converters at the access points (APs) and users in presence of an active eavesdropper. Using the additive quantization noise model, the uplink minimum mean squared error channel estimation and downlink data precoding are respectively operated. Specifically, the lower bound on the achievable ergodic rate and upper bound for the information leakage to the eavesdropper are theoretically derived in details. Thereby, the closed-form expression for the achievable ergodic secrecy rate is accordingly obtained with respect to the number of APs, number of each APs antenna, number of users, pilot and data transmission power and quantization bits, etc. In addition, the asymptotic approximation for the ergodic secrecy rate has been presented. Moreover, the path-following power control algorithm has been proposed aiming at maximizing the secrecy rate subject to both power and achievable rate constraints. Finally, extensive simulations are provided to corroborate the theoretical analytical results and the validity of the proposed power allocation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marzetta, T.L., . (2015). Massive MIMO: an introduction. Bell Labs Tech. J., 20, 11–22.

    Article  Google Scholar 

  2. Larsson, E. G., Edfors, O., Tufvesson, F., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2), 186–195.

    Article  Google Scholar 

  3. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wireless Commun., 9(11), 3590–3600.

    Article  Google Scholar 

  4. Bjornson, E., Larsson, E., & G., Marzetta, T, L. . (2016). Massive MIMO: ten myths and one critical question. IEEE Commun. Mag., 54(2), 114–123.

    Article  Google Scholar 

  5. Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G Wireless HetNet: potential benefits and challenges. IEEE Veh. Technol. Mag., 11(1), 64–75.

    Article  Google Scholar 

  6. Zhang, J., Wen, C., K., Jin, S., , et al. (2013). On capacity of large-scale MIMO multiple access channels with distributed sets of correlated antennas. IEEE J. Selected Areas Commun., 31(2), 133–148.

    Article  Google Scholar 

  7. Hosseini, K., Yu, W., & Adve, R. S. (2014). Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE J. Selected Top. Signal Process., 8(5), 930–941.

    Article  Google Scholar 

  8. Ngo, H. Q., Ashikhmin, A., Yang, H., et al. (2017). Cell-free massive MIMO versus small cells. IEEE Trans. Wireless Commun., 16(3), 1834–1850.

    Article  Google Scholar 

  9. Ngo, H. Q., Tran, L., Duong, T. Q., et al. (2018). On the total energy efficiency of cell-free massive MIMO. IEEE Trans. Green Commun. Netw., 2(1), 25–39.

    Article  Google Scholar 

  10. Interdonato, G., Ngo, H. Q., Frenger, P., et al. (2019). Downlink training in cell-free massive MIMO: a blessing in disguise. IEEE Trans. Wireless Commun., 18(11), 5153–5169.

    Article  Google Scholar 

  11. Nguyen, T. K., Nguyen, H. H., & Tuan, H. D. (2020). Max–min QoS power control in generalized cell-free massive MIMO–NOMA with optimal backhaul combining. IEEE Trans. Veh. Technol., 69(10), 10949–10964.

    Article  Google Scholar 

  12. Nguyen, L. D., Duong, T. Q., Ngo, H. Q., et al. (2017). Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Commun. Lett., 21(8), 1871–1874.

    Article  Google Scholar 

  13. Björnson, E., Sanguinetti, L. (2020). Making cell-free massive MIMO competitive with MMSE processing and centralized implementation. IEEE Trans. Wireless Commun., 19(1), 77–90.

    Article  Google Scholar 

  14. Doan, T. X., Ngo, H. Q., Duong, T. Q., et al. (2017). On the performance of multigroup multicast cell-free massive MIMO. IEEE Commun. Lett., 21(12), 2642–2645.

    Article  Google Scholar 

  15. Papazafeiropoulos, A., Kourtessis, P., Renzo, M. D., et al. (2020). Performance analysis of cell-free massive MIMO systems: a stochastic geometry approach. IEEE Trans. Veh. Technol., 69(4), 3523–3537.

    Article  Google Scholar 

  16. Zhang, Z.; & Dai, L.: (2020). Capacity improvement in wideband reconfigurable intelligent surface-aided cell-free network. In IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5.

  17. Vu, T. T., Ngo, D. T., Tran, N. H., et al. (2020). Cell-free massive MIMO for wireless federated learning. IEEE Trans. Wireless Commun., 19(10), 6377–6392.

    Article  Google Scholar 

  18. Yang, N., Wang, L., Geraci, G., et al. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag., 53(4), 20–27.

    Article  Google Scholar 

  19. Bloch, M., Barros, J., Rodrigues, M. R. D., et al. (2008). Wireless information-theoretic security. IEEE Trans. Inf. Theory, 54(6), 2515–2534.

    Article  MathSciNet  MATH  Google Scholar 

  20. Yener, A., & Ulukus, S. (2015). Wireless physical-layer security: lessons learned from information theory. Proc. IEEE, 103(10), 1814–1825.

    Article  Google Scholar 

  21. Mukherjee, A., Fakoorian, S. A. A., Huang, J., et al. (2014). Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun. Surv. Tutorials, 16(3), 1550–1573.

    Article  Google Scholar 

  22. Hong, Y. P., Lan, P., & Kuo, C. J. (2013). Enhancing physical-layer secrecy in multiantenna wireless systems: an overview of signal processing approaches. IEEE Signal Process. Mag., 30(5), 29–40.

    Article  Google Scholar 

  23. Trappe, W. (2015). The challenges facing physical layer security. IEEE Commun. Mag., 53(6), 16–20.

    Article  Google Scholar 

  24. Wu, Y., Khisti, A., Xiao, C., et al. (2018). A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Selected Areas Commun., 36(4), 679–695.

    Article  Google Scholar 

  25. Zhu, J., Schober, R., Bhargava, V.K. (2014). Secure transmission in multicell massive MIMO systems. IEEE Trans. Wireless Commun., 13(9), 4766–4781.

    Article  Google Scholar 

  26. Zhu, J., Schober, R., Bhargava, V.K. (2016). Linear precoding of data and artificial noise in secure massive MIMO systems. IEEE Trans. Wireless Commun., 15(3), 2245–2261.

    Article  Google Scholar 

  27. Wu, Y., Schober, R., Ng, D.W.K. et al. (2016). Secure massive MIMO transmission with an active eavesdropper. IEEE Trans. Inf. Theory, 62(7), 3880–3900.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kapetanovic, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: an overview on passive eavesdropping and active attacks. IEEE Commun. Mag., 53(6), 21–27.

    Article  Google Scholar 

  29. Zhang, X., Guo, D., Guo, K., et al. (2018). Secure performance analysis and detection of pilot attack in massive multiple-input multiple-output system. Int. J. Distrib. Sensor Netw., 5, 1–12.

    Google Scholar 

  30. Zhang, X., Guo, D., Yang, K., et al. (2018). Secure downlink transmission with finite resolution analog beamforming in massive multiple-input multiple-output system. Int. J. Distrib. Sensor Netw., 9, 1–13.

    Google Scholar 

  31. Zhu, J., Xu, W., & Wang, N. (2017). Secure massive MIMO systems with limited RF chains. IEEE Trans. Veh. Technol., 66(6), 5455–5460.

    Article  Google Scholar 

  32. Guo, K.; Guo, Y.; & Ascheid, G. (2015). Distributed antennas aided secure communication in MU-massive-MIMO with QoS guarantee. In Proceeding of 2015 IEEE 82nd Vehicular Technology Conference, pp. 1–7.

  33. Zhang, X., Guo, D., An, K., et al. (2020). Secure transmission and power allocation in multiuser distributed massive MIMO systems. Wireless Netw., 26, 941–954.

    Article  Google Scholar 

  34. Guo, K., Guo, Y., & Ascheid, G. (2016). Security-constrained power allocation in MU-massive-MIMO with distributed antennas. IEEE Trans. Wireless Commun., 15(12), 8139–8153.

    Article  Google Scholar 

  35. Hoang, T. M., Ngo, H. Q., Duong, T. Q., et al. (2018). Cell-free massive MIMO networks: optimal power control against active eavesdropping. IEEE Trans. Commun., 66(10), 4724–4737.

    Article  Google Scholar 

  36. Zhang, X., Guo, D., An, K., et al. (2019). Secrecy analysis and active pilot spoofing attack detection for multigroup multicasting cell-free massive MIMO systems. IEEE Access, 7, 57332–57340.

    Article  Google Scholar 

  37. Zhang, X., Guo, D., An, K., et al. (2020). Secure communications over cell-free massive MIMO networks with hardware impairments. IEEE Syst. J., 14(2), 1909–1920.

    Article  Google Scholar 

  38. Li, Y., Tao, C., Swindlehurst, A. L., et al. (2017). Downlink achievable rate analysis in massive MIMO systems with one-bit DACs. IEEE Commun. Lett., 21(7), 1669–1672.

    Article  Google Scholar 

  39. Hu, X., Zhong, C., Chen, X., et al. (2019). Cell-free massive MIMO systems with low resolution ADCs. IEEE Trans. Commun., 67(10), 6844–6857.

    Article  Google Scholar 

  40. Hu, X.; Zhong, C.; Chen, X., et al.: (2018) Rate analysis and ADC bits allocation for cell-free massive MIMO systems with low resolution ADCs. IEEE Global Communications Conference (GLOBECOM), pp. 1–6.

  41. Xu, Q., & Ren, P. (2020). Secure massive MIMO downlink with low-resolution ADCs/DACs in the presence of active eavesdropping. IEEE Access, 8, 140981–140997.

    Article  Google Scholar 

  42. Zhang, Y., Zhou, M., Cao, H., et al. (2020). Joint resource optimisation in Cell-free massive MIMO with low-resolution ADCs. IET Commun., 14(12), 1894–1901.

    Article  Google Scholar 

  43. Zhang, Y., Zhou, M., Qiao, X., et al. (2019). On the performance of cell-free massive mimo with low-resolution ADCs. IEEE Access, 7, 117968–117977.

    Article  Google Scholar 

  44. Teeti, M. A. (2020). Downlink secrecy rate of one-bit massive MIMO system with active eavesdropping. IEEE Access, 8, 37821–37842.

    Article  Google Scholar 

  45. Gersho, A., & Gray, R. M. (1992). Vector Quantization and Signal Compression. Norwell: Springer.

    Book  MATH  Google Scholar 

  46. Tuy, H. (2016). Convex Analysis and Global Optimization (2nd ed., p. 2016). Cham: Springer.

    Book  MATH  Google Scholar 

  47. Timilsina, S.; Kudathanthirige, D.; & Amarasuriya, G.: (2018). Physical layer security in cell-free massive MIMO. IEEE Global Communications Conference (GLOBECOM), pp. 1–7.

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editors for helping to improve this paper. This work was supported by the National Natural Science Foundation of China under Grant 61901502 and Grant U19B214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

To derive the closed-form expression of (24), we should analyze the different components seperately. Firstly, we focus on the term \({\mathbb E}\left\{ {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} } \right\} \) as

$$\begin{aligned} \begin{aligned}&{\mathbb E}\left\{ {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} } \right\} \\&= \sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\mathbb E}\left\{ {{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} \right\} } \\&= \sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} \left( {{\mathbb E}\left\{ {{\hat{\varvec{g}}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} \right\} + {\mathbb E}\left\{ {{\varvec{\tilde{g}}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} \right\} } \right) }. \end{aligned} \end{aligned}$$
(53)

Due to the independence between the channel estimation \({{\hat{\varvec{g}}}_{mk}}\) and estimation error \({{\varvec{\tilde{g}}}_{mk}}\), it is easy to obtain that

$$\begin{aligned} \begin{aligned} {\mathbb E}\left\{ {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} } \right\} = \sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\lambda _{mk}}} . \end{aligned} \end{aligned}$$
(54)

Then, we calculate

$$\begin{aligned} \begin{aligned}&\mathrm{Var}\left( {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} } \right) = \\&{\mathbb E}\left\{ {{{\left| {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} - {\mathbb E}\left\{ {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} } \right\} } \right| }^2}} \right\} \\&= \sum \limits _{m = 1}^M {{\eta _{mk}}{\mathbb E}\left\{ {{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} \right\} } \\&- {\left( {{\mathbb E}\left\{ {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} } \right\} } \right) ^2} \\& \quad + \sum \limits _{m = 1}^M {\sum \limits _{m' \ne m}^M {\sqrt{{\eta _{mk}}{\eta _{m'k}}} {\mathbb E}\left\{ {{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*{\varvec{g}}_{m'k}^T{\hat{\varvec{g}}}_{m'k}^*} \right\} } } . \end{aligned} \end{aligned}$$
(55)

According to some existing literature[35]-[36], we can get that

$$\begin{aligned} \begin{aligned} {\mathbb E}\left\{ {{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} \right\}&= {\mathbb E}\left\{ {{{\left\| {{{\varvec{g}}_{mk}}} \right\| }^4}} \right\} + {\mathbb E}\left\{ {\left| {{\varvec{\tilde{g}}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} \right| } \right\} \\&= {N^2}\lambda _{mk}^2 + N{\lambda _{mk}}{\beta _{mk}}, \end{aligned} \end{aligned}$$
(56)
$$\begin{aligned} \begin{aligned} {\mathbb E}\left\{ {{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*{\varvec{g}}_{m'k}^T{\hat{\varvec{g}}}_{m'k}^*} \right\} = {N^2}{\lambda _{mk}}{\lambda _{m'k}}, m \ne m'. \end{aligned} \end{aligned}$$
(57)

Substituting (56) and (57) into (55), we can get that

$$\begin{aligned} \begin{aligned} \mathrm{Var}\left( {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} } \right) = N\sum \limits _{m = 1}^M {{\eta _{mk}}{\lambda _{mk}}{\beta _{mk}}}. \end{aligned} \end{aligned}$$
(58)

Then, we compute

$$\begin{aligned} \begin{aligned} \mathrm{U}{\mathrm{I}_k}&= \gamma _k^2{\rho _d}\sum \limits _{i \ne k}^K {\sum \limits _{m = 1}^M {{\eta _{mi}}E\left\{ {{\varvec{g}}_{mk}^T{\hat{\varvec{g}}}_{mi}^*{\hat{\varvec{g}}}_{mi}^T{\varvec{g}}_{mk}^*} \right\} } }\\&= N\gamma _k^2{\rho _d}\sum \limits _{m = 1}^M {{\eta _{mi}}{\lambda _{mi}}{\beta _{mk}}} . \end{aligned} \end{aligned}$$
(59)

Now we can focus on the last term as

$$\begin{aligned} \begin{aligned} \mathrm{Q}{\mathrm{N}_k}&= {\gamma _k}\left( {1 - {\gamma _k}} \right) {\mathbb E}\left\{ {{{\left| {{r_k}} \right| }^2}} \right\} = {\gamma _k}\left( {1 - {\gamma _k}} \right) \left( {1 + {\rho _d}{\zeta _k}} \right) . \end{aligned} \end{aligned}$$
(60)

where

$$\begin{aligned} \begin{aligned} {\zeta _k} =&N\sum \limits _{i = 1}^K {\sum \limits _{m = 1}^M {{\eta _{mi}}{\lambda _{mi}}{\beta _{mk}}} } +\\&{N^2}\sum \limits _{m = 1}^M {\sum \limits _{m' = 1}^M {\sqrt{{\eta _{mk}}{\eta _{m'k}}} {\lambda _{mk}}{\lambda _{m'k}}} }. \end{aligned} \end{aligned}$$
(61)

Substituting (54), (58), (59) and (60) into (24) yields the results given by (27), which completes the proof.

Appendix B

For analytical tractability, we can analyze the numerator (desired signal) and denominator (the effective noise) of the Eve’s SINR. Hence, we start with the desired signal component that

$$\begin{aligned} \begin{aligned}&{\mathbb E}\left\{ {{{\left| {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\varvec{g}}_{mE}^T{\hat{\varvec{g}}}_{mk}^*} } \right| }^2}} \right\} = \sum \limits _{m = 1}^M {{\eta _{mk}}{\mathbb E}\left\{ {{{\left| {{\varvec{g}}_{mE}^T{\hat{\varvec{g}}}_{mk}^*} \right| }^2}} \right\} }\\&= \sum \limits _{m = 1}^M {{\eta _{mk}}{\mathbb E}\left\{ {{{\left| {\left( {{\hat{\varvec{g}}}_{mE}^T + {\varvec{\tilde{g}}}_{mE}^T} \right) {\hat{\varvec{g}}}_{mk}^*} \right| }^2}} \right\} } \\&= \sum \limits _{m = 1}^M {{\eta _{mk}}\left( {{\mathbb E}\left\{ {{{\left| {{\hat{\varvec{g}}}_{mE}^T{\hat{\varvec{g}}}_{mk}^*} \right| }^2}} \right\} + {\mathbb E}\left\{ {{{\left| {{\varvec{\tilde{g}}}_{mE}^T{\hat{\varvec{g}}}_{mk}^*} \right| }^2}} \right\} } \right) } \end{aligned} \end{aligned}$$
(62)

According to the property of the MMSE algorithm used in this paper, we know that

$$\begin{aligned} \begin{aligned} {\mathbb E}\left\{ {{{\left| {{\hat{\varvec{g}}}_{mE}^T{\hat{\varvec{g}}}_{mk}^*} \right| }^2}} \right\}&= \frac{{{\rho _E}\beta _{mE}^2}}{{{\rho _u}\beta _{mk}^2}}{\mathbb E}\left\{ {{{\left| {{\hat{\varvec{g}}}_{mk}^T{\hat{\varvec{g}}}_{mk}^*} \right| }^2}} \right\} \\&= \frac{{N\left( {N + 1} \right) {\rho _E}\beta _{mE}^2}}{{{\rho _u}\beta _{mk}^2}}\lambda _{mk}^2. \end{aligned} \end{aligned}$$
(63)

Due to mutual independence between the channel estimation and estimation error, it is not hard to achieve that

$$\begin{aligned} \begin{aligned} {\mathbb E}\left\{ {{{\left| {{\varvec{\tilde{g}}}_{mE}^T{\hat{\varvec{g}}}_{mk}^*} \right| }^2}} \right\}&= N{\lambda _{mk}}\left( {{\beta _{mE}} - {\lambda _{mE}}} \right) \\&= N{\lambda _{mk}}\left( {{\beta _{mE}} - \frac{{{\rho _E}\beta _{mE}^2{\lambda _{mk}}}}{{{\rho _u}\beta _{mk}^2}}} \right) . \end{aligned} \end{aligned}$$
(64)

Next, we calculate the multi-user interference component using the independence of different terms as

$$\begin{aligned} \begin{aligned} \sum \limits _{i \ne k}^K {{\mathbb E}\left\{ {{{\left| {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mi}}} {\varvec{g}}_{mE}^T{\hat{\varvec{g}}}_{mi}^*} } \right| }^2}} \right\} } = \sum \limits _{i \ne k}^K {N{\eta _{mi}}{\lambda _{mi}}{\beta _{mE}}}. \end{aligned} \end{aligned}$$
(65)

Plugging (62) and (65) into (28), we finally achieve the result as (29). This finishes the proof.

Appendix C

From (27) and (29), it is easy to see that \({R_k}\) and \({R_E}\) are increasing with M. Then, by relaxing M to be a continuous real number, after some simple algebraic manipulations, we know that \(\frac{{\partial R_{\sec }^k}}{{\partial M}} > 0\) which indicates that system can obtain more secrecy capacity by equipping more APs.

Note that the expression (27) can be rewritten as

$$\begin{aligned} \begin{aligned} {R_k} = {\log _2}\left( {1 + \frac{1}{{\frac{{1 - {\gamma _k}}}{{{\gamma _k}}} + L_k^{\left( 1 \right) } + L_k^{\left( 2 \right) }}}} \right) , \end{aligned} \end{aligned}$$
(66)

where

$$\begin{aligned} \begin{aligned} L_k^{\left( 1 \right) } = \frac{{\sum \limits _{i = 1}^K {\sum \limits _{m = 1}^M {{\eta _{mi}}{\lambda _{mi}}{\beta _{mk}}} } }}{{N{\gamma _k}{{\left( {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\lambda _{mk}}} } \right) }^2}}}, \end{aligned} \end{aligned}$$
(67)
$$\begin{aligned} \begin{aligned} L_k^{\left( 2 \right) } = \frac{1}{{{N^2}{\gamma _k}{\rho _d}{{\left( {\sum \limits _{m = 1}^M {\sqrt{{\eta _{mk}}} {\lambda _{mk}}} } \right) }^2}}}. \end{aligned} \end{aligned}$$
(68)

Then, defining that \({\mathrm{\Gamma } _k} = \min \left\{ {\sqrt{{\eta _{mk}}} {\lambda _{mk}}} \right\} , 1 \le m \le M\) and \({\mathrm{\Theta } _k} = \max \left\{ {\sum \limits _{i = 1}^K {{\eta _{mi}}{\lambda _{mi}}{\beta _{mk}}} } \right\} , 1 \le m \le M\), we can get that

$$\begin{aligned} \begin{aligned} L_k^{\left( 1 \right) } \le \frac{{M{\mathrm{\Theta } _k}}}{{N{\mathrm{\gamma } _k}{M^2}\mathrm{\Gamma } _k^2}} = \frac{{{\mathrm{\Theta } _k}}}{{MN{\mathrm{\gamma } _k}\mathrm{\Gamma } _k^2}}, \end{aligned} \end{aligned}$$
(69)
$$\begin{aligned} \begin{aligned} L_k^{\left( 2 \right) } \le \frac{1}{{{M^2}{N^2}{\mathrm{\gamma } _k}{\rho _d}\mathrm{\Theta } _k^2}}, \end{aligned} \end{aligned}$$
(70)

Obviously, we can derive that \(\mathop {\lim }\limits _{M \rightarrow + \infty } L_k^{\left( 1 \right) } = 0\) and \(\mathop {\lim }\limits _{M \rightarrow + \infty } L_k^{\left( 2 \right) } = 0\).

Consequently, it can be derived that

$$\begin{aligned} \begin{aligned} \mathop {\lim }\limits _{M \rightarrow + \infty } {R_k} = {\log _2}\left( {1 + \frac{{{\gamma _k}}}{{1 - {\gamma _k}}}} \right) . \end{aligned} \end{aligned}$$
(71)

Similarly, with the definition of \({A_k}\), \({B_k}\), \({C_k}\) and \({D_k}\), we can get that

$$\begin{aligned} \begin{aligned} {\log _2}\left( {1 + \frac{{M{A_k}}}{{M{B_k} + 1}}} \right) \le {R_E} \le {\log _2}\left( {1 + \frac{{M{C_k}}}{{M{D_k} + 1}}} \right) . \end{aligned} \end{aligned}$$
(72)

Evidently, we note that \({A_k}\), \({B_k}\), \({C_k}\) and \({D_k}\) are all positive terms, and don’t scale with M. Hence, we can further get that

Plugging (71) and (72) into (36) can complete the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, T. & An, K. Secrecy performance analysis of cell-free massive MIMO in the presence of active eavesdropper with low resolution ADCs. Wireless Netw 27, 4839–4852 (2021). https://doi.org/10.1007/s11276-021-02766-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02766-0

Keywords

Navigation