Abstract
Wireless physical layer security (WPLS) is a powerful technology for current and emerging mobile networks. Physical layer authentication (PLA), antenna selection (AS), and relay node selection are the main elements that add diversity and strength to the paradigm of WPLS. However, heterogeneity, ultra-density, and high mobility requirements make the work difficult for the security of wireless networks. Recently, machine learning has emerged as a promising tool to alleviate the increasing complexity of wireless networks. Hence, this paper introduces intelligent WPLS by concentration on PLA, AS, and relay node selection. First, it presents the background and types of WPLS and ML. Then, revisit the three basic methods of WPLS enhancement, i.e., relay node selection, AS, and authentication, and their integration with ML. Furthermore, several key challenges faced by intelligent WPLS were discussed along with the comprehensive investigation of its different applications in the wireless networks such as the internet of things, device-to-device communication, cognitive radio, non-orthogonal multiple access, and unmanned aerial vehicles. Finally, the appendix includes a detailed survey of ML techniques for WPLS. This article proposes to motivate and help interested readers to easily and rapidly understand the state-of-the-art of WPLS and intelligent WPLS.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-021-02781-1/MediaObjects/11276_2021_2781_Fig12_HTML.png)
Similar content being viewed by others
References
Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K. K., & Gao, X. (2018). A Survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 36, 679–695. https://doi.org/10.1109/JSAC.2018.2825560
Dhanda SS, Singh B, Jindal P. Lightweight Cryptography: A Solution to Secure IoT. Springer US; 2020. doi: https://doi.org/10.1007/s11277-020-07134-3.
Wang, N., Wang, P., Alipour-Fanid, A., Jiao, L., & Zeng, K. (2019). Physical layer security of 5G wireless networks for IoT: Challenges and opportunities. IEEE Internet of Things Journal, 6, 1–1. https://doi.org/10.1109/jiot.2019.2927379
Zhang, J., Duong, T. Q., Marshall, A., & Woods, R. (2016). Key generation from wireless channels: A review. IEEE Access, 4, 614–626. https://doi.org/10.1109/ACCESS.2016.2521718
Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2019). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys and Tutorials, 21, 1773–1828. https://doi.org/10.1109/COMST.2018.2878035
Jameel, F., Wyne, S., Kaddoum, G., & Duong, T. Q. (2018). A Comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Communications Surveys and Tutorials, 21, 2734–2771. https://doi.org/10.1109/COMST.2018.2865607
Wang, D., Bai, B., Zhao, W., & Han, Z. (2019). A survey of optimization approaches for wireless physical layer security. IEEE Communications Surveys and Tutorials, 21, 1878–1911. https://doi.org/10.1109/COMST.2018.2883144
Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104, 1727–1765. https://doi.org/10.1109/JPROC.2016.2558521
Trappe, W. (2015). The challenges facing physical layer security. IEEE Communications Magazine, 53, 16–20. https://doi.org/10.1109/MCOM.2015.7120011
Mukherjee, A., Fakoorian, S. A. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16, 1550–1573. https://doi.org/10.1109/SURV.2014.012314.00178
Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4), 656–715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal., 54(8), 1355–1387. https://doi.org/10.1002/j.1538-7305.1975.tb02040.x
Zhou, X., Song, L., & Zhang, Y. (2013). Physical layer security in wireless communications. CRC Press.
Duong TQ et.al. Trusted Communications with Physical Layer Security for 5G and Beyond.IET;2017
Hassan, E. S., & Hassan, E. S. (2019). Physical layer security in wireless. Networks. https://doi.org/10.1201/9781315106106-3
Mukherjee, A., Fakoorian, S. A., Huang, J., Swindlehurst, L., Zhou, X., Song, L., & Zhang, Y. (2013). MIMO signal processing algorithms for enhanced physical layer security. Physical Layer Security in Wireless Communications, 56, 93–114.
Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions. IEEE Access, 7, 137184–137206. https://doi.org/10.1109/ACCESS.2019.2942390
Gunduz, D., de Kerret, P., Sidiropoulos, N. D., Gesbert, D., Murthy, C. R., & van der Schaar, M. (2019). Machine learning in the air. IEEE Journal on Selected Areas in Communications, 37, 2184–2199. https://doi.org/10.1109/jsac.2019.2933969
Simeone, O. (2018). A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking, 4, 648–664. https://doi.org/10.1109/TCCN.2018.2881442
Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-learning algorithms: A comprehensive classification and applications. IEEE Access, 7, 133653–133667. https://doi.org/10.1109/ACCESS.2019.2941229
Li, G., Gomez, R., Nakamura, K., & He, B. (2019). Human-centered reinforcement learning: A survey. IEEE Transactions on Human-Machine Systems, 49, 337–349. https://doi.org/10.1109/THMS.2019.2912447
O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3, 563–575. https://doi.org/10.1109/TCCN.2017.2758370
Yang, C., He, Z., Peng, Y., Wang, Y., & Yang, J. (2019). Deep learning aided method for automatic modulation recognition. IEEE Access, 7, 109063–109068. https://doi.org/10.1109/access.2019.2933448
Hoang, T. M., Duong, T. Q., Tuan, H. D., Lambotharan, S., & Hanzo, L. (2021). Physical layer security: Detection of active eavesdropping attacks by support vector machines. IEEE Access, 9, 31595–31607. https://doi.org/10.1109/ACCESS.2021.3059648
Germain KS, Kragh F. Physical-Layer Authentication Using Channel State Information and Machine Learning. arXiv preprint https://arxiv.org/abs/2006.03695. 2020 Jun 5.
Qiu, X., Dai, J., & Hayes, M. (2020). A learning approach for physical layer authentication using adaptive neural network. IEEE Access., 8, 26139–36149. https://doi.org/10.1109/ACCESS.2020.2971260
Zhang, T., Wen, H., Tang, J., Song, H., & Xie, F. (2020). Cooperative jamming secure scheme for iwns random mobile users aided by edge computing intelligent node selection. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2020.3017767
Wang, X., & Liu, F. (2020). Data-driven relay selection for physical-layer security: A decision tree approach. IEEE Access, 8, 12105–12116. https://doi.org/10.1109/ACCESS.2020.2965963
Kamboj, A. K., Jindal, P., & Verma, P. (2021). Intelligent physical layer secure relay selection for wireless cooperative networks with multiple eavesdroppers. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08458-4
He, D., Liu, C., Quek, T. Q. S., & Wang, H. (2018). Transmit antenna selection in MIMO wiretap channels: A machine learning approach. IEEE Wireless Communications Letters, 7, 634–637. https://doi.org/10.1109/LWC.2018.2805902
Yao, R., Zhang, Y., Wang, S., Qi, N., Miridakis, N. I., & Tsiftsis, T. A. (2019). Deep neural network assisted approach for antenna selection in untrusted relay networks. IEEE Wireless Communications Letters, 8, 1644–1647. https://doi.org/10.1109/LWC.2019.2933392
Xiao, L., Greenstein, L. J., Mandayam, N. B., & Trappe, W. (2009). Channel-based detection of sybil attacks in wireless networks. IEEE Transactions on Information Forensics and Security, 4, 492–503. https://doi.org/10.1109/TIFS.2009.2026454
Tugnait, J. K. (2013). Wireless user authentication via comparison of power spectral densities. IEEE Journal on Selected Areas in Communications, 31, 1791–1802. https://doi.org/10.1109/JSAC.2013.130912
Hou, W., Wang, X., Chouinard, J. Y., & Refaey, A. (2014). Physical layer authentication for mobile systems with time-varying carrier frequency offsets. IEEE Transactions on Communications, 62, 1658–1667. https://doi.org/10.1109/TCOMM.2014.032914.120921
Ramabadran, P., Afanasyev, P., Malone, D., Leeser, M., McCarthy, D., O’Brien, B., et al. (2020). A novel physical layer authentication with PAPR reduction based on channel and hardware frequency responses. IEEE Transactions on Circuits and Systems I: Regular Papers, 67, 526–539. https://doi.org/10.1109/TCSI.2019.2952936
Bao, V. N. Q., Linh-Trung, N., & Debbah, M. (2013). Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Transactions on Wireless Communications, 12, 6076–6085. https://doi.org/10.1109/TWC.2013.110813.121671
Zhang, P., Taleb, T., Jiang, X., & Wu, B. (2020). Physical layer authentication for massive MIMO systems with hardware impairments. IEEE Transactions on Wireless Communications, 19, 1563–1576. https://doi.org/10.1109/TWC.2019.2955128
Vazquez-Castro, A., & Hayashi, M. (2019). Physical layer security for RF satellite channels in the finite-length regime. IEEE Transactions on Information Forensics and Security, 14, 981–993. https://doi.org/10.1109/TIFS.2018.2868538
Yu, P. L., Baras, J. S., & Sadler, B. M. (2008). Physical-layer authentication. IEEE Transactions on Information Forensics and Security, 3, 38–51. https://doi.org/10.1109/TIFS.2007.916273
Chen, G., & Coon, J. P. (2017). Secrecy outage analysis in random wireless networks with antenna selection and user ordering. IEEE Wireless Communications Letters, 6, 334–337. https://doi.org/10.1109/LWC.2017.2689024
Chen, G., Dwyer, V., Krikidis, I., Thompson, J. S., McLaughlin, S., & Chambers, J. (2012). Comment on “relay selection for secure cooperative networks with Jamming.” IEEE Transactions on Wireless Communications, 11, 2351. https://doi.org/10.1109/TWC.2012.12.112208
Wang, L., Cai, Y., Zou, Y., Yang, W., & Hanzo, L. (2016). Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays. IEEE Transactions on Vehicular Technology, 65, 6259–6274. https://doi.org/10.1109/TVT.2015.2478029
Jindal, A., & Bose, R. (2015). Resource allocation for secure multicarrier AF relay system under total power constraint. IEEE Communications Letters, 19, 231–234. https://doi.org/10.1109/LCOMM.2014.2379652
Xu, Q., Ren, P., Du, Q., & Sun, L. (2018). Security-aware waveform and artificial noise design for time-reversal-based transmission. IEEE Transactions on Vehicular Technology, 67, 5486–5490. https://doi.org/10.1109/TVT.2018.2813318
Jiang, X. Q., Wen, M., Hai, H., Li, J., & Kim, S. (2018). Secrecy-enhancing scheme for spatial modulation. IEEE Communications Letters, 22, 550–553. https://doi.org/10.1109/LCOMM.2017.2783955
Basar, E., Wen, M., Mesleh, R., Di Renzo, M., Xiao, Y., & Haas, H. (2017). Index modulation techniques for next-generation wireless networks. IEEE Access, 5, 16693–16746. https://doi.org/10.1109/ACCESS.2017.2737528
Besser, K.-L., Lin, P.-H., Janda, C. R., & Jorswieck, E. A. (2019). Wiretap code design by neural network autoencoders. IEEE Transactions on Information Forensics and Security, 6013, 1–1. https://doi.org/10.1109/tifs.2019.2945619
Pahuja, S., & Jindal, P. (2019). Cooperative communication in physical layer security: Technologies and challenges. Wireless Personal Communications, 108, 811–837. https://doi.org/10.1007/s11277-019-06430-x
Chauhan, S. S., Verma, P., Mathur, M., Agarwal, M., & Gupta, T. (2016). Physical layer security of MIMO STBC over Rayleigh fading channels in the presence of channel estimation error. Optik, 127, 7625–7630. https://doi.org/10.1016/j.ijleo.2016.05.086
Pal, S., & Jindal, P. (2019). Secrecy performance analysis of hybrid AF - DF relaying under multi hop environment. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06954-2
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal on Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210
Mitchell, T. M. (1997). Does machine learning really work ? AI Management., 18, 71–83. https://doi.org/10.1609/aimag.v18i3.1303
Bishop CM. Pattern Recognition and Machine Learning. Springer, 2006. https://www.springer.com/gp/book/9780387310732.
Alpaydin E, Introduction to machine learning. MIT press, 2014. https://mitpress.mit.edu/books/introduction-machine-learning-third-edition.
Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2), 373–440. https://doi.org/10.1007/s10994-019-05855-6
Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K. L. A., Elkhatib, Y., Hussain, A., & Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access, 7, 65579–65615. https://doi.org/10.1109/ACCESS.2019.2916648
Qin, Z., Ye, H., Li, G. Y., & Juang, B. H. F. (2019). Deep learning in physical layer communications. IEEE Wireless Communications, 26, 93–99. https://doi.org/10.1109/MWC.2019.1800601
Zhang, C., Patras, P., & Haddadi, H. (2019). Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 21, 2224–2287. https://doi.org/10.1109/comst.2019.2904897
Wu, Q., Feres, C., Kuzmenko, D., Zhi, D., Yu, Z., Liu, X., et al. (2018). Deep learning based RF fingerprinting for device identification and wireless security. Electronics Letters, 54, 1405–1407. https://doi.org/10.1049/el.2018.6404
Wang, X. (2019). Decision-tree-based relay selection in Dualhop wireless communications. IEEE Transaction on Vehicular Communication., 68, 6212–6216. https://doi.org/10.1109/TVT.2019.2909302
Joung, J. (2016). Machine learning-based antenna selection in wireless communications. IEEE Communications Letters, 20, 2241–2244. https://doi.org/10.1109/LCOMM.2016.2594776
Li, W., & Huang, J. (2018). Mobile physical layer spoofing detection based on sparse representation. IET Communications, 12, 1709–1713. https://doi.org/10.1049/iet-com.2017.0829
Youssef, K., Bouchard, L., Haigh, K., Silovsky, J., Thapa, B., & Vander, Valk C. (2018). Machine learning approach to RF transmitter identification. IEEE Journal of Radio Frequency Identification, 2, 197–205. https://doi.org/10.1109/jrfid.2018.2880457
Wang, Q., Li, H., Zhao, D., Chen, Z., Ye, S., & Cai, J. (2019). Deep neural networks for CSI-based authentication. IEEE Access, 7, 123026–123034. https://doi.org/10.1109/access.2019.2938533
Xiao, L., Li, Y., Han, G., Liu, G., & Zhuang, W. (2016). PHY-layer spoofing detection with reinforcement learning in wireless networks. IEEE Transactions on Vehicular Technology, 65, 10037–10047. https://doi.org/10.1109/TVT.2016.2524258
Wang, N., Jiang, T., Lv, S., & Xiao, L. (2017). Physical-layer authentication based on extreme learning machine. IEEE Communications Letters, 21, 1557–1560. https://doi.org/10.1109/LCOMM.2017.2690437
Qiu, X., Jiang, T., Wu, S., & Hayes, M. (2018). Physical layer authentication enhancement using a gaussian mixture model. IEEE Access, 6, 53583–53592. https://doi.org/10.1109/ACCESS.2018.2871514
Fang, H., Wang, X., & Hanzo, L. (2019). Learning-aided physical layer authentication as an intelligent process. IEEE Transactions on Communications, 67, 2260–2273. https://doi.org/10.1109/TCOMM.2018.2881117
Xu, Y., Xia, J., Wu, H., & Fan, L. (2020). Q-learning based physical-layer secure game against multiagent attacks. IEEE Access, 7, 49212–49222. https://doi.org/10.1109/ACCESS.2019.2910272
Hoang, T. M., Nguyen, N. M., & Duong, T. Q. (2020). Detection of eavesdropping attack in UAV-aided wireless systems: unsupervised learning with one-class SVM and K-means clustering. IEEE Wireless Communications Letters, 9, 139–142. https://doi.org/10.1109/LWC.2019.2945022
Sankhe, K., Belgiovine, M., Zhou, F., Angioloni, L., Restuccia, F., D’Oro, S., et al. (2020). No radio left behind: Radio fingerprinting through deep learning of physical-layer hardware impairments. IEEE Transactions on Cognitive Communications and Networking, 6, 165–178. https://doi.org/10.1109/TCCN.2019.2949308
Peng, L., Zhang, J., Liu, M., & Hu, A. (2020). Deep learning based rf fingerprint identification using differential constellation trace figure. IEEE Transactions on Vehicular Technology., 69, 1091–1095. https://doi.org/10.1109/TVT.2019.2950670
Zhang, Z., Guo, X., & Lin, Y. (2018). Trust management method of D2D Communication Based on RF fingerprint identification. IEEE Access, 6, 66082–66087. https://doi.org/10.1109/ACCESS.2018.2878595
Liao, R.-F., Wen, H., Wu, J., Pan, F., Xu, A., Song, H., et al. (2019). Security enhancement for mobile edge computing through physical layer authentication. IEEE Access, 7, 116390–116401. https://doi.org/10.1109/access.2019.2934122
Liao, R. F., Wen, H., Chen, S., Xie, F., Pan, F., Tang, J., et al. (2020). Multiuser physical layer authentication in internet of things with data augmentation. IEEE Internet of Things Journal, 7, 2077–2088. https://doi.org/10.1109/JIOT.2019.2960099
Sa, K., Lang, D., Wang, C., & Bai, Y. (2020). Specific emitter identification techniques for the internet of things. IEEE Access, 8, 1644–1652. https://doi.org/10.1109/ACCESS.2019.2962626
An, W., Zhang, P., Xu, J., Luo, H., Huang, L., & Zhong, S. (2020). A novel machine learning aided antenna selection scheme for MIMO Internet of Things. Sensors., 20(8), 2250. https://doi.org/10.3390/s20082250
Hui, H., Swindlehurst, A. L., Li, G., & Liang, J. (2015). Secure relay and jammer selection for physical layer security. IEEE Signal Processing Letters, 22, 1147–1151. https://doi.org/10.1109/LSP.2014.2387860
Deng, H., Wang, H. M., Guo, W., & Wang, W. (2015). Secrecy transmission with a Helper: To relay or to Jam. IEEE Transactions on Information Forensics and Security, 10, 293–307. https://doi.org/10.1109/TIFS.2014.2374356
Kamboj, A. K., Jindal, P., & Verma, P. (2021). Physical layer security-based relay selection for wireless cooperative networks: A reinforcement learning approach. In B. Singh, C. A. Coello Coello, P. Jindal, & P. Verma (Eds.), Intelligent computing and communication systems algorithms for intelligent systems. Singapore: Springer.
Al-Qahtani, F. S., Zhong, C., & Alnuweiri, H. M. (2015). Opportunistic relay selection for secrecy enhancement in cooperative networks. IEEE Transactions on Communications, 63, 1756–1770. https://doi.org/10.1109/TCOMM.2015.2412939
Lei, X., Fan, L., Hu, R. Q., Michalopoulos, D. S., & Fan, P. (2014). Secure multiuser communications in multiple decode-and-forward relay networks. IEEE Transactions on Communication, 62, 3180–3185. https://doi.org/10.1109/GLOCOM.2014.7037295
Tran, T. T., & Kong, H. Y. (2014). CSI-Secured orthogonal jamming method for wireless physical layer security. IEEE Communications Letters, 18, 841–844. https://doi.org/10.1109/LCOMM.2014.040214.140109
Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31, 2099–2111. https://doi.org/10.1109/JSAC.2013.131011
Nguyen, N. P., Duong, T. Q., Ngo, H. Q., Hadzi-Velkov, Z., & Shu, L. (2016). Secure 5G wireless communications: A joint relay selection and wireless power transfer approach. IEEE Access, 4, 3349–3359. https://doi.org/10.1109/ACCESS.2016.2582719
Zhang, N., Cheng, N., Lu, N., Zhang, X., Mark, J. W., & Shen, X. (2015). Partner selection and incentive mechanism for physical layer security. IEEE Transactions on Wireless Communications, 14, 4265–4276. https://doi.org/10.1109/TWC.2015.2418316
Yang, L., Chen, J., Jiang, H., Vorobyov, S. A., & Zhang, H. (2017). Optimal relay selection for secure cooperative communications with an adaptive eavesdropper. IEEE Transactions on Wireless Communications, 16, 26–42. https://doi.org/10.1109/TWC.2016.2617328
Khandaker, M. R. A., Wong, K. K., & Zheng, G. (2017). Truth-Telling mechanism for two-way relay selection for secrecy communications with energy-harvesting revenue. IEEE Transactions on Wireless Communications, 16, 3111–3123. https://doi.org/10.1109/TWC.2017.2675402
Jia, S., Zhang, J., Zhao, H., Lou, Y., & Xu, Y. (2018). Relay selection for improved physical layer security in cognitive relay networks using artificial noise. IEEE Access, 6, 64836–64846. https://doi.org/10.1109/ACCESS.2018.2878058
Chen, J., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay network. IEEE Transactions on Information Forensics And Security, 7, 310–320. https://doi.org/10.1109/GLOCOM.2011.6133875
Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58, 1875–1888. https://doi.org/10.1109/TSP.2009.2038412
Jadoon, M. A., & Kim, S. (2017). Relay selection algorithm for wireless cooperative networks: A learning-based approach. IET Communications, 11, 1061–1066. https://doi.org/10.1049/iet-com.2016.1046
Su, Y., Lu, X., Zhao, Y., Huang, L., & Du, X. (2019). Cooperative communications with relay selection based on deep reinforcement learning in wireless sensor networks. IEEE Sensors Journal, 19, 9561–9569. https://doi.org/10.1109/JSEN.2019.2925719
Tian, D., Zhou, J., Sheng, Z., Chen, M., Ni, Q., & Leung, V. C. M. (2017). Self-organized relay selection for cooperative transmission in vehicular Ad-Hoc networks. IEEE Transactions on Vehicular Technology, 66, 9534–9549. https://doi.org/10.1109/TVT.2017.2715328
Nguyen, T.-T., Lee, J.-H., Nguyen, M.-T., & Kim, Y.-H. (2019). Machine learning-based relay selection for secure transmission in multi-hop DF relay networks. Electronics, 8, 949. https://doi.org/10.3390/electronics8090949
Yang, N., Yeoh, P. L., Elkashlan, M., Schober, R., & Yuan, J. (2013). MIMO wiretap channels: Secure transmission using transmit antenna selection and receive generalized selection combining. IEEE Communications Letters, 17, 1754–1757. https://doi.org/10.1109/LCOMM.2013.071813.131048
Ding, Z., Ma, Z., & Fan, P. (2014). Asymptotic studies for the impact of antenna selection on secure two-way relaying communications with artificial noise. IEEE Transactions on Wireless Communications, 13, 2189–2203. https://doi.org/10.1109/TWC.2014.022714131252
Yang, M., Guo, D., Huang, Y., Duong, T. Q., & Zhang, B. (2016). Physical layer security with threshold-based multiuser scheduling in multi-antenna wireless networks. IEEE Transactions on Communications, 64, 5189–5202. https://doi.org/10.1109/TCOMM.2016.2606396
Chen, J., Chen, S., Qi, Y., & Fu, S. (2019). Intelligent massive MIMO antenna selection using monte carlo tree search. IEEE Transactions on Signal Processing, 67, 5380–5390. https://doi.org/10.1109/TSP.2019.2940128
Yang, X., & Zhao, F. (2020). Multi-class import vector machine for transmit antenna selection in MIMO systems. Electronics Letters, 56, 62–65. https://doi.org/10.1049/el.2019.3233
Gecgel, S., Goztepe, C., Kurt, G. K., & Member, S. (2020). Transmit antenna selection for large-scale MIMO. IEEE Wireless Communications Letters, 9, 113–116. https://doi.org/10.1109/LWC.2019.2944179
Sim, M. S., Lim, Y.-G., Park, S. H., Dai, L., & Chae, C.-B. (2020). Deep learning-based mmWave beam selection for 5G NR/6G with sub-6 ghz channel information: Algorithms and prototype validation. IEEE Access, 8, 51634–51646. https://doi.org/10.1109/access.2020.2980285
Chai X, Gao H, Sun J, Su X, Lv T, Zeng J. Reinforcement Learning Based Antenna Selection in User-Centric Massive MIMO. In2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring) 2020 May 25 (pp. 1–6). IEEE. https://https://doi.org/10.1109/VTC2020-Spring48590.2020.9129108.
Guo, M., & Gursoy, M. C. (2020). Statistical learning based joint antenna selection and user scheduling for single-cell massive MIMO systems. IEEE Transactions on Green Communications and Networking. https://doi.org/10.1109/TGCN.2020.3033967
Elbir, A. M., Mishra, K. V., & Eldar, Y. C. (2019). Cognitive radar antenna selection via deep learning. IET Radar, Sonar and Navigation, 13, 871–880. https://doi.org/10.1049/iet-rsn.2018.5438
Wang Y, Klautau A, Ribero M, Narasimha M, Heath RW. MmWave Vehicular Beam Training with Situational Awareness by Machine Learning. IEEE Globecom 2018.
Simmons, G. J. (1988). A survey of information authentication. Proceedings of the IEEE, 76, 603–620. https://doi.org/10.1109/5.4445.
Stallings, W. (2010). Cryptography and network security: Principles and Practice (5th ed.). Prentice Hall.
Zeng, K. (2010). Non-cryptographic authentication and identification in wireless networks. IEEE Wireless Communications. https://doi.org/10.1109/MWC.2010.5601959
Jakes, W. C., & Cox, D. C. (1994). Microwave mobile communications. Wiley-IEEE Press.
Wen, H., Ho, P. H., Qi, C., & Gong, G. (2010). Physical layer assisted authentication for distributed ad hoc wireless sensor networks. IET Information Security, 4, 390–396. https://doi.org/10.1049/iet-ifs.2009.0197
Challita, U., Ferdowsi, A., Chen, M., & Saad, W. (2019). Machine learning for wireless connectivity and security of cellular-connected UAV’s. IEEE Wireless Communications, 26, 28–35. https://doi.org/10.1109/MWC.2018.1800155
Liao, R. F., Wen, H., Wu, J., Pan, F., Xu, A., Jiang, Y., et al. (2019). Deep-learning-based physical layer authentication for industrial wireless sensor networks. Sensors (Basel, Switzerland), 19, 1–17. https://doi.org/10.3390/s19112440
Zheng, G., Hua, C., Zheng, R., & Wang, Q. (2016). toward robust relay placement in 60 GHz mmWave wireless personal area networks with directional antenna. IEEE Transactions on Mobile Computing, 15, 762–773. https://doi.org/10.1109/TMC.2015.2425409
Ahmad, W. S. H. M. W., Radzi, N. A. M., Samidi, F. S., Ismail, A., Abdullah, F., Jamaludin, M. Z., et al. (2020). 5G technology: Towards DYNAMIC SPECTRUM SHARING USING COGNITIVE RADIO NETWORKs. IEEE Access, 8, 14460–88. https://doi.org/10.1109/ACCESS.2020.2966271
Verma, P., & Singh, B. (2016). Throughput maximization by alternative use of single and double thresholds based energy detection method. Optik, 127, 1635–1638. https://doi.org/10.1016/j.ijleo.2015.11.072
Verma, P. (2020). Adaptive threshold based energy detection over rayleigh fading channel. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07189-2
Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6, 2676–2687. https://doi.org/10.1049/iet-com.2011.0638
Zou Y, Member S, Champagne B, Member S, Zhu W. Relay-Selection Improves the Security-Reliability Trade-off in Cognitive Radio Systems n. IEEE Transaction on Communications 2015. . https://https://doi.org/10.1109/TCOMM.2014.2377239.
Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communication. Letter, 4, 46–49. https://doi.org/10.1109/LWC.2014.2365808
Yan P, Zou Y, Zhu J. Transmit antenna selection to improve physical layer security for MIMO-CR systems. 2016 8th International Conference on Wireless Communications and Signal Processing, WCSP 2016 2016:1–4. doi: https://doi.org/10.1109/WCSP.2016.7752737.
Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transaction on Green Communication Networks, 1, 192–203. https://doi.org/10.1109/TGCN.2017.2684827
Chen, D., Cheng, Y., Yang, W., Hu, J., Member, S., Cai, Y., et al. (2018). Physical layer security in cognitive untrusted relay networks. IEEE Access, 6, 7055–7065. https://doi.org/10.1109/ACCESS.2017.2762738
Yang, Q., Laurenson, D. I., & Barria, J. A. (2012). On the use of LEO satellite constellation for active network management in power distribution. Networks, 3, 1371–1381. https://doi.org/10.1109/TSG.2012.2197644
Liu, J., Wang, J., Liu, W., Wang, Q., & Wang, M. (2018). A novel cooperative physical layer security scheme for satellite downlinks. Chinese Journal of Electronics, 27, 860–865. https://doi.org/10.1049/cje.2018.05.016
An, K., Lin, M., Ouyang, J., & Zhu, W. (2016). Secure transmission in cognitive satellite terrestrial networks. IEEE Journal on Selected Areas in Communication, 34, 3025–3037. https://doi.org/10.1109/JSAC.2016.2615261
Boero, L., Bruschi, R., Davoli, F., Marchese, M., & Patrone, F. (2018). Satellite networking integration in the 5g ecosystem: Research trends and open challenges. IEEE Network, 32, 9–15. https://doi.org/10.1109/MNET.2018.1800052
Lin, M., Lin, Z., Zhu, W., Member, S., & Wang, J. (2018). Joint beamforming for secure communication in cognitive satellite terrestrial networks. IEEE Journal on Selected Areas in Communication, 36, 1017–29. https://doi.org/10.1109/JSAC.2018.2832819
Bankey, V., & Upadhyay, P. K. (2019). Physical layer security of multiuser multirelay hybrid satellite-terrestrial relay networks. IEEE Transactions on Vehicular Technology, 68, 2488–2501. https://doi.org/10.1109/TVT.2019.2893366
Guo, K., An, K., Zhang, B., Huang, Y., & Guo, D. (2018). Physical layer security for hybrid satellite terrestrial relay networks with joint relay selection and user scheduling. IEEE Access, 6, 55815–55827. https://doi.org/10.1109/ACCESS.2018.2872718
Huang, Q., Lin, M., An, K., Ouyang, J., & Zhu, W. P. (2018). Secrecy performance of hybrid satellite-terrestrial relay networks in the presence of multiple eavesdroppers. IET Communications, 12, 26–34. https://doi.org/10.1049/iet-com.2017.0948
Cao, W., Zou, Y., Yang, Z., & Zhu, J. (2018). Relay selection for improving physical-layer security in hybrid satellite-terrestrial relay networks. IEEE Access, 6, 65275–65285. https://doi.org/10.1109/ACCESS.2018.2877709
Li, J., Han, S., Tai, X., Gao, C., & Zhang, Q. (2020). Physical layer security enhancement for satellite communication among similar channels: Relay selection and power allocation. IEEE Systems Journal, 14, 433–444. https://doi.org/10.1109/JSYST.2019.2921306
Zeng, W., Zhang, J., Ng, D. W. K., Ai, B., & Zhong, Z. (2019). Two-way hybrid terrestrial-satellite relaying systems: Performance analysis and relay selection. IEEE Transactions on Vehicular Technology, 68, 7011–7023. https://doi.org/10.1109/TVT.2019.2916992
Lai, P., Bai, H., Huang, Y., Chen, Z., & Liu, T. (2019). Performance evaluation of underlay cognitive hybrid satellite-terrestrial relay networks with relay selection scheme. IET Communications, 13, 2550–2557. https://doi.org/10.1049/iet-com.2018.5333
Hamoud, O. N., Kenaza, T., & Challal, Y. (2018). Security in device-to-device communications: A survey. IET Networks, 7, 14–22. https://doi.org/10.1049/iet-net.2017.0119
Haus, M., Waqas, M., Ding, A. Y., Li, Y., & Member, S. (2017). Security and privacy in device-to-device ( D2D ) communication : A review. IEEE Communications Surveys and Tutorials, 19, 1054–1079.
Yue, J., Ma, C., Yu, H., & Zhou, W. (2013). Secrecy-based access control for device-to-device communication underlaying cellular networks. IEEE Communications Letters, 17, 2068–2071. https://doi.org/10.1109/LCOMM.2013.092813.131367
Zhang, R., Cheng, X., & Yang, L. (2016). Cooperation via spectrum sharing for physical layer security in device-to-device communications Underlaying cellular networks. IEEE Transactions on Wireless Communications, 15, 5651–5663. https://doi.org/10.1109/TWC.2016.2565579
Wang, R., Liu, K., Wu, D., Wang, H., & Yan, J. (2017). Malicious-behavior-aware D2D Link selection mechanism. IEEE Access, 5, 15162–15173. https://doi.org/10.1109/ACCESS.2017.2734807
Hao, P., Wang, X., & Shen, W. (2018). A Collaborative PHY-Aided Technique for End-to-End IoT Device Authentication. IEEE Access, 6, 42279–42293. https://doi.org/10.1109/ACCESS.2018.2859781
Qian, H., Yu, J., & Hua, L. (2019). Relay selection algorithm based on social network combined with Q-learning for vehicle D2D communication. IET Communications, 13, 3582–3587. https://doi.org/10.1049/iet-com.2019.0419
Luo, Y., Feng, Z., Jiang, H., Yang, Y., Huang, Y., & Yao, J. (2019). Game-theoretic learning approaches for secure D2D communications against full-duplex active eavesdropper. IEEE Access, 7, 41324–41335. https://doi.org/10.1109/ACCESS.2019.2906845
Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV communication networks. IEEE Communications Surveys and Tutorials, 18, 1123–1152. https://doi.org/10.1109/COMST.2015.2495297
Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A., et al. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys and Tutorials, 21, 3417–3442. https://doi.org/10.1109/COMST.2019.2906228
Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., et al. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634. https://doi.org/10.1109/ACCESS.2019.2909530
Ma, R., Yang, W., Zhang, Y., Liu, J., & Shi, H. (2019). Secure mmWave communication using UAV-enabled relay and cooperative jammer. IEEE Access, 7, 119729–119741. https://doi.org/10.1109/access.2019.2933231
Huang, K. W., & Wang, H. M. (2018). Combating the Control Signal Spoofing Attack in UAV Systems. IEEE Transactions on Vehicular Technology, 67, 7769–7773. https://doi.org/10.1109/TVT.2018.2830345
Shoufan, A., Al-Angari, H. M., Sheikh, M. F. A., & Damiani, E. (2018). Drone pilot identification by classifying radio-control signals. IEEE Transactions on Information Forensics and Security, 13, 2439–2447. https://doi.org/10.1109/TIFS.2018.2819126
Wang, B., Sun, Y., Sheng, Z., Nguyen, H. M., & Duong, T. Q. (2019). Inconspicuous manipulation for social-aware relay selection in flying internet of things. IEEE Wireless Communications Letters, 8, 1394–1397. https://doi.org/10.1109/LWC.2019.2919536
Huang, H., Yang, Y., Wang, H., Ding, Z., Sari, H., & Adachi, F. (2020). Deep reinforcement learning for UAV navigation through massive MIMO technique. IEEE Transactions on Vehicular Technology, 69, 1117–1121. https://doi.org/10.1109/TVT.2019.2952549
Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., & Ni, W. (2019). Anatomy of threats to the internet of things. IEEE Communications Surveys and Tutorials, 21, 1636–1675. https://doi.org/10.1109/COMST.2018.2874978
Xiao, L., Wan, X., Lu, X., Zhang, Y., & Wu, D. (2018). IoT security techniques based on machine learning: How do IoT devices use ai to enhance security? IEEE Signal Processing Magazine, 35, 41–49. https://doi.org/10.1109/MSP.2018.2825478
Zhang, Y., Shen, Y., Wang, H., Yong, J., & Jiang, X. (2016). On secure wireless communications for IoT under Eavesdropper Collusion. IEEE Transactions on Automation Science and Engineering, 13, 1281–1293. https://doi.org/10.1109/TASE.2015.2497663
Letafati, M., Kuhestani, A., & Behroozi, H. (2020). Three-hop untrusted relay networks with hardware imperfections and channel estimation errors for internet of things. IEEE Transactions on Information Forensics and Security, 15, 2856–2868. https://doi.org/10.1109/TIFS.2020.2978627
Dai, L., Wang, B., Jiao, R., Ding, Z., Han, S., & Chih-Lin, I. (2018). Nonorthogonal multiple access for 5G. 5G Networks: Fundamental requirements Enabling Technologies, and Operations Management, 20, 135–203. https://doi.org/10.1002/9781119333142.ch4
Vaezi, M., Aruma Baduge, G. A., Liu, Y., Arafa, A., Fang, F., & Ding, Z. (2019). Interplay between NOMA and Other Emerging Technologies: A Survey. IEEE Transactions on Cognitive Communications and Networking, 5, 900–919. https://doi.org/10.1109/TCCN.2019.2933835
Lei, H., Zhang, J., Park, K. H., Xu, P., Ansari, I. S., Pan, G., et al. (2017). On secure NOMA Systems With Transmit Antenna Selection Schemes. IEEE Access, 5, 17450–17464. https://doi.org/10.1109/ACCESS.2017.2737330
Lei, H., Zhang, J., Park, K. H., Xu, P., Zhang, Z., Pan, G., et al. (2018). Secrecy outage of max-min TAS scheme in MIMO-NOMA systems. IEEE Transactions on Vehicular Technology, 67, 6981–6990. https://doi.org/10.1109/TVT.2018.2824310
Lei, H., Yang, Z., Park, K. H., Ansari, I. S., Guo, Y., Pan, G., et al. (2019). Secrecy outage analysis for cooperative NOMA systems with relay selection schemes. IEEE Transactions on Communications, 67, 6282–6298. https://doi.org/10.1109/TCOMM.2019.2916070
Chen, J., Yang, L., & Alouini, M. S. (2018). Physical layer security for cooperative NOMA systems. IEEE Transactions on Vehicular Technology, 67, 4645–4649. https://doi.org/10.1109/TVT.2017.2789223
Wang, Z., & Peng, Z. (2019). Secrecy performance analysis of relay selection in cooperative NOMA systems. IEEE Access, 7, 86274–86287. https://doi.org/10.1109/ACCESS.2019.2925380
Yu, C., Ko, H. L., Peng, X., Xie, W., & Zhu, P. (2019). Jammer-aided secure communications for cooperative NOMA systems. IEEE Communications Letters, 23, 1935–1939. https://doi.org/10.1109/LCOMM.2019.2934410
Cao, K., Wang, B., Ding, H., Li, T., & Gong, F. (2020). Optimal Relay Selection For Secure NOMA systems under untrusted users. IEEE Transactions on Vehicular Technology, 69, 1942–1955. https://doi.org/10.1109/TVT.2019.2962860
Pei, X., Yu, H., Wen, M., Li, Q., & Ding, Z. (2020). Secure outage analysis for cooperative NOMA Systems With Antenna Selection. IEEE Transactions on Vehicular Technology, 69, 1–1. https://doi.org/10.1109/tvt.2020.2973726
Qu, F., Wu, Z., Wang, F., & Cho, W. (2015). A security and privacy review of VANETs. IEEE Transactions on Intelligent Transportation Systems, 16, 2985–2996. https://doi.org/10.1109/TITS.2015.2439292
Xiao, L., Lu, X., Xu, D., Tang, Y., Wang, L., & Zhuang, W. (2018). UAV relay in VANETs against smart jamming with reinforcement learning. IEEE Transactions on Vehicular Technology, 67, 4087–4097. https://doi.org/10.1109/TVT.2018.2789466
Acknowledgements
This work was supported by University Grants Commission (UGC), India, under UGC-NET scheme for Electronic science with reference number 22482/(OBC)/(NET-DEC.-2015).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
The list of used acronyms and their full form is mentioned in Table 13.
Rights and permissions
About this article
Cite this article
Kamboj, A.K., Jindal, P. & Verma, P. Machine learning-based physical layer security: techniques, open challenges, and applications. Wireless Netw 27, 5351–5383 (2021). https://doi.org/10.1007/s11276-021-02781-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-021-02781-1