Skip to main content

Advertisement

Log in

Energy and spectrum efficiency in predictive-cooperative cognitive radio networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a new predictive-cooperative spectrum sensing (PCSS) scheme is presented which exploits the benefits of both spectrum prediction and cooperative spectrum sensing in a cognitive radio network (CRN). The spectrum efficiency (SE) and energy efficiency (EE) with PCSS are evaluated when the CRN traffic is high. Then, the SE and EE tradeoff problem is formulated via joint optimization of the sensing duration and PCSS decision threshold. Results are presented which show that the proposed PCSS scheme provides a significant improvement in SE and EE compared to well-known schemes in the literature. The decision threshold and sensing time are optimized considering the SE and EE. The effect of balancing SE and EE requirements is also investigated while maximizing the EE and satisfying an SE constraint. Results are presented which show a 34% and 52% gain in EE and SE, respectively, with PCSS compared to cooperative spectrum sensing scheme when the sensing duration and decision threshold are jointly optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Toma, O. H., López-Benítez, M., Patel, D. K., & Umebayashi, K. (2020). Estimation of primary channel activity statistics in cognitive radio based on imperfect spectrum sensing. IEEE Transactions on Communications, 68(4), 2016–2031.

    Article  Google Scholar 

  2. Wu, H., Yao, F., Chen, Y., Liu, Y., & Liang, T. (2017). Cluster-based energy efficient collaborative spectrum sensing for cognitive sensor network. IEEE Communications Letters, 21(12), 2722–2725.

    Article  Google Scholar 

  3. Liu, X., Zheng, K., Chi, K., & Zhu, Y.-H. (2020). Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 19(11), 7663–7676.

    Article  Google Scholar 

  4. Thakur, P., Kumar, A., Pandit, S., Singh, G., & Satashia, S. N. (2018). Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques. Wireless Networks, 24(6), 2005–2015.

    Article  Google Scholar 

  5. Zhang, Y., Hou, J., Towhidlou, V., & Shikh-Bahaei, M. R. (2019). A neural network prediction-based adaptive mode selection scheme in full-duplex cognitive networks. IEEE Transactions on Cognitive Communications and Networking, 5(3), 540–553.

    Article  Google Scholar 

  6. Barnes, S. D., Maharaj, B. T., & Alfa, A. S. (2016). Cooperative prediction for cognitive radio networks. Wireless Personal Communications, 89(4), 1177–1202.

    Article  Google Scholar 

  7. Shaghluf, N., & Gulliver, T. A. (2019). Spectrum and energy efficiency of cooperative spectrum prediction in cognitive radio networks. Wireless Networks, 25(6), 3265–3274.

    Article  Google Scholar 

  8. Nguyen, V. D., & Shin, O. S. (2017). Cooperative prediction-and-sensing based spectrum sharing in cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 4(1), 108–120.

    Article  Google Scholar 

  9. Zhang, W., Wang, C., Chen, D., & Xiong, H. (2016). Energy–spectral efficiency tradeoff in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(4), 2208–2218.

    Article  Google Scholar 

  10. Shokri-Ghadikolaei, H., Glaropoulos, I., Fodor, V., Fischione, C., & Ephremides, A. (2015). Green sensing and access: Energy-throughput trade-offs in cognitive networking. IEEE Communications Magazine, 53(11), 199–207.

    Article  Google Scholar 

  11. Haider, F., Wang, C., Haas, H., Hepsaydir, E., Ge, X., & Yuan, D. (2015). Spectral and energy efficiency analysis for cognitive radio networks. IEEE Transactions on Wireless Communications, 14(6), 2969–2980.

    Article  Google Scholar 

  12. Yang, J., & Zhao, H. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communications Letters, 19(10), 1738–1741.

    Article  Google Scholar 

  13. Yu, L., Guo, Y., Wang, Q., Luo, C., Li, M., Liao, W., & Li, P. (2020). Spectrum availability prediction for cognitive radio communications: A DCG approach. IEEE Transactions on Cognitive Communications and Networking, 6(2), 476–485.

    Article  Google Scholar 

  14. Zhao, Y., Hong, Z., Luo, Y., Wang, G., & Pu, L. (2018). Prediction-based spectrum management in cognitive radio networks. IEEE Systems Journal, 12(4), 3303–3314.

    Article  Google Scholar 

  15. López-Benítez, M., Al-Tahmeesschi, A., Patel, D. K., Lehtomäki, J., & Umebayashi, K. (2018). Estimation of primary channel activity statistics in cognitive radio based on periodic spectrum sensing observations. IEEE Transactions on Wireless Communications, 18(2), 983–996.

    Article  Google Scholar 

  16. Kerdabadi, M. S., Ghazizadeh, R., Farrokhi, H., & Najimi, M. (2019). Energy consumption minimization and throughput improvement in cognitive radio networks by joint optimization of detection threshold, sensing time and user selection. Wireless Networks, 25(4), 2065–2079.

    Article  Google Scholar 

  17. Hu, H., Zhang, H., & Liang, Y. (2016). On the spectrum- and energy-efficiency tradeoff in cognitive radio networks. IEEE Transactions on Communications, 64(2), 490–501.

    Article  Google Scholar 

  18. Chatterjee, S., Maity, S. P., & Acharya, T. (2019). Energy-spectrum efficiency trade-off in energy harvesting cooperative cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 5(2), 295–303.

    Article  Google Scholar 

  19. Peh, E. C. Y., Liang, Y., Guan, Y. L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.

    Article  Google Scholar 

  20. Tong, J., Jin, M., Guo, Q., & Li, Y. (2018). Cooperative spectrum sensing: A blind and soft fusion detector. IEEE Transactions on Wireless Communications, 17(4), 2726–2737.

    Article  Google Scholar 

  21. Hoyhtya, M., Pollin, S., & Mammela, A., (2010). Classification-based predictive channel selection for cognitive radios. Proc. IEEE International Conference on Communications, Cape Town, South Africa.

  22. Ozcan, G., Gursoy, M. C., & Tang, J. (2017). Spectral and energy efficiency in cognitive radio systems with unslotted primary users and sensing uncertainty. IEEE Transactions on Communications, 65(10), 4138–4151.

    Google Scholar 

  23. Eltom, H., Kandeepan, S., Moran, B., & Evans, R. J. (2015). Spectrum occupancy prediction using a hidden Markov mode. Proc. International Conference on Signal Processing and Communication Systems, Cairns, Australia.

  24. Bhowmick, A., Yadav, K., Roy, S. D., & Kundu, S. (2017). Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Transactions on Vehicular Technology, 66(9), 8119–8128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa Shaghluf.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaghluf, N., Gulliver, T.A. Energy and spectrum efficiency in predictive-cooperative cognitive radio networks. Wireless Netw 27, 5297–5311 (2021). https://doi.org/10.1007/s11276-021-02786-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02786-w

Keywords

Navigation