Skip to main content

Advertisement

Log in

An edge computing oriented unified cryptographic key management service for financial context

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cryptography plays a key role in information systems of financial industry. With the rapid development of financial industry, the scale of the financial cryptographic services continues to expand, and the volume of terminal devices increased significantly, causing problems such as system complexity and extreme workload. The centralized data processing model enabled by cloud computing can ease these problems to some extent, but when the data produced by various kinds of devices (e.g. IoT devices) continues to increase rapidly, cloud computing-based services subsequentially cannot meet the demand of real-time and efficient data processing. The edge computing is an emerging computing model, which is capable of hierarchically managing the resource, and supporting the deployment of cryptographic services at the edge. The edge computing-based cryptographic service separates data encryption/ decryption processing and provides low-level interfaces for financial business systems. It could simplify the way financial business systems obtain cryptographic services. In this paper, we propose an edge oriented cryptographic key management service, which consists of system monitor module, key management module and security management module. The proposed service enables the management of the whole life cycle of cryptographic keys, and reconstructs the process of cryptographic key. In a 1-year continuous testing, the proposed system achieved a total of 36 million cryptographic key distributions, and each cryptographic key has a lifecycle of 1.5 days on average. The TPS reached 15,000, and the system availability reached 99.99% throughout the year. The proposed system now is officially available as a commercial cryptographic service platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu, H., & Zhou, Z. Z. (2016). Analysis and outlook of applications of blockchain technology to equity crowdfunding in China. Financial Innovation, 2(1), 29.

    Article  Google Scholar 

  2. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864.

    Article  Google Scholar 

  3. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and Challenges. IEEE Internet of Things Journal, 3(5), 637–646.

    Article  Google Scholar 

  4. Gimbel, E. (2021). Edge Computing Brings the Cloud Closer to the Data for Agencies, FedTech, https://fedtechmagazine.com/article/2021/02/edge-computing-brings-cloud-closer-data-agencies.

  5. Jin, N., Zeng, Y., Yan, K., & Ji, Z. (2021). Multivariate air quality forecasting with nested LSTM neural network. IEEE Transactions on Industrial Informatics, 1(1), 99.

    Google Scholar 

  6. Zhou, X. K., Liang, W., Wang, I. K., Huang, R., & Jin, Q. (2021). Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data. IEEE Transactions on Emerging Topics in Computing, 9(1), 246–257.

    Article  Google Scholar 

  7. Satyanarayanan, M., SimoensP., Xiao Y., Pillai P.,  Chen Z., Ha K., Hu W., & Amos B. (2015). Edge analytics in the internet of things. IEEE Pervasive Computing, 14(2), 24–31.

    Article  Google Scholar 

  8. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys and Tutorials, 19(4), 2322–2358.

    Article  Google Scholar 

  9. Yan, K. (2021). Chiller fault detection and diagnosis with anomaly detective generative adversarial network. Building and Environment.

  10. Yan, K., Chong, A., & Mo, Y. (2020). Generative adversarial network for fault detection diagnosis of chillers. Building and Environment, 172, 106698.

    Article  Google Scholar 

  11. Cui, G., Wang, Y., Han, D., Wang, Y., Wang, Z., & Wu, Y. (2014). An Encryption scheme based on DNA microdots technology. In L. Pan, G. Păun, M. J. Pérez-Jiménez, & T. Song (Eds.), Bio-inspired computing - Theories and applications communications in computer and information science. Springer.

    Google Scholar 

  12. Zhou, R., Wu, Q., Zhang, M., & Shen, C. (2013). Quantum image encryption and decryption algorithms based on quantum image geometric transformations. International Journal of Theoretical Physics, 52(6), 1802–1817.

    Article  MathSciNet  Google Scholar 

  13. Guan, Z. H., Huang, F. J., & Guan, W. J. (2005). Chaos-based image encryption algorithm. Physics Letters A, 346(1–3), 153–157.

    Article  Google Scholar 

  14. Liu, F. W., & Koenig, H. (2010). A survey of video encryption algorithms. Computers & Security, 29(1), 3–15.

    Article  Google Scholar 

  15. Winternitz, R. S. (1984). Producing a one-way hash function from DES advances in cryptology. Springer.

    Google Scholar 

  16. Patil, P., Narayankar, P., Narayan, D. G., & Meena, S. M. (2016). A Comprehensive evaluation of cryptographic algorithms: DES, 3DES, AES, RSA and Blowfish. Procedia Computer Science, 78, 617–624.

    Article  Google Scholar 

  17. Stallings, W. (2002). The advanced encryption standard. Cryptologia, 26(3), 165–188.

    Article  Google Scholar 

  18. Davies, D. (1997). A brief history of cryptography. Information Security Technical Report, 2(2), 14–17.

    Article  MathSciNet  Google Scholar 

  19. Wardlaw, W. P. (2000). The RSA public key cryptosystem. In D. Joyner (Ed.), Coding theory and cryptography. Springer.

    Google Scholar 

  20. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48(177), 203–209.

    Article  MathSciNet  Google Scholar 

  21. Lenstra, A. K., & Verheul, E. R. (2001). Selecting cryptographic key sizes. Journal of Cryptology, 14(4), 255–293.

    Article  MathSciNet  Google Scholar 

  22. Blakley, G. R., & Chaum, D. (1985). [lecture notes in computer science] advances in cryptology volume 196 || identity-based cryptosystems and signature schemes., Chapter 5, (pp. 47-53).

  23. Kim, J., Camtepe, S., Susilo, W., Nepal, S., & Baek, J. (2019). Identity-Based Broadcast Encryption with Outsourced Partial Decryption for Hybrid Security Models in Edge Computing. the 2019 ACM Asia Conference.

  24. Zhou, X. K., Xu, X. S., Liang, W., Zeng, Z., & Jin, Q. (2021). Intelligent small object detection based on digital twinning for smart manufacturing in industrial CPS. IEEE Transactions on Industrial Informatics, 1(1), 99.

    Google Scholar 

  25. Mach, P., & Becvar, Z. (2017). Mobile edge computing: a survey on architecture and computation offloading. IEEE Communications Surveys and Tutorials, 19(3), 1628–1656.

    Article  Google Scholar 

  26. Zhou, X. K., Liang, W., Shimizu, S., Ma, J. H., & Jin, Q. (2021). Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 17(8), 5790–5798. 

    Article  Google Scholar 

  27. Yan, K., Huang, J., Shen, W., & Ji, Z. (2020). Unsupervised learning for fault detection and diagnosis of air handling units. Energy and Buildings, 210(Mar.), 109689.1–109689.10.

    Google Scholar 

  28. Yan, K., Ji, Z., Jin, Q., & Wang, Q. G. (2021). Guest editorial: machine learning for ai-enhanced healthcare and medical services: new development and promising solution. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(3), 850–851.

    Article  Google Scholar 

  29. Vengadapurvaja, A. M., Nisha, G., Aarthy, R., & Sasikaladevi, N. (2017). An efficient homomorphic medical image encryption algorithm for cloud storage security. Procedia Computer Science, 115, 643–650.

    Article  Google Scholar 

  30. Chen, J. J., Cai, T. F., He, W. X., Chen, L., Zou, W. W., & Guo, L. L. (2020). A Blockchain-driven supply chain finance application for auto retail industry. Entropy, 22(1), 95.

    Article  Google Scholar 

  31. Mahmud, M. S., Huang, Z. X., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics, 3(2), 85–101.

    Article  Google Scholar 

  32. Chen, J. J., Lu, H. J., Ruan, Y., & Guo, L. L. (2020). BCVehis: A blockchain-based vehicle history tracking service for used-car trades in China. IEEE Access, 8, 214842–214851.

    Article  Google Scholar 

  33. Zhou, X. K., Xu, X., Liang, W., Zeng, Z., & Yan, Z. (2021). Deep learning enhanced multi-target detection for end-edge-cloud surveillance in smart IoT. IEEE Internet of Things Journal.

  34. Tan, X., Zhang, J. L., Zhang, Y. J., Qin, Z., Ding, Y., & Wang, X. W. (2021). A PUF-based and cloud-assisted lightweight authentication for multi-hop body area network. Tsinghua Science and Technology, 26(1), 36–47.

    Article  Google Scholar 

  35. Azrour, M., Mabrouki, J., Guezzaz, A., & Farhaoui, Y. (2021). New enhanced authentication protocol for internet of things. Big Data Mining and Analytics, 4(1), 1–9.

    Article  Google Scholar 

  36. Zou, J. B., Fu, X. K., Guo, L. L., Ju, C. H., & Chen, J. J. (2021). Creating ensemble classifiers with information entropy diversity measure. Security and Communication Networks, 1–11.

  37. Bi, R., Liu, Q., Ren, J. K., & Tan, G. Z. (2021). Utility aware offloading for mobile-edge computing. Tsinghua Science and Technology, 26(2), 239–250.

    Article  Google Scholar 

  38. Mabrouki, J., Azrour, M., Fattah, G., Dhiba, D., & Hajjaji, S. E. (2021). Intelligent monitoring system for biogas detection based on the internet of things: Mohammedia, morocco city landfill case. Big Data Mining and Analytics, 4(1), 10–17.

    Article  Google Scholar 

  39. Coral, C., Javier, M., Félix, G., María, N., & Moraga, J. (2020). 5Ws of green and sustainable software. Tsinghua Science and Technology, 25(3), 401–414.

    Article  Google Scholar 

  40. Zhou, X. K., Yang, X., Ma, J., & Wang, K. (2021). Energy efficient smart routing based on link correlation mining for wireless edge computing in IoT. IEEE Internet of Things Journal, 1(1), 99.

    Google Scholar 

  41. Zhang, W., Chen, X., & Jiang, J. H. (2021). A multi-objective optimization method of initial virtual machine fault-tolerant placement for star topological data centers of cloud systems. Tsinghua Science and Technology, 26(1), 95–111.

    Article  Google Scholar 

  42. Yu, Q., Zhang, Y., & Wei, F. (2017). TICS: Trusted Industry Control System Based on Hardware Security Module. International Symposium on Cyberspace Safety and Security.

  43. Zhou, X. K., Li, Y., & Liang, W. (2020). CNN-RNN based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), 99.

    Google Scholar 

  44. Malek, Y. N., Najib, M., Bakhouya, M., & Essaaidi, M. (2021). Multivariate deep learning approach for electric vehicle speed forecasting. Big Data Mining and Analytics, 4(1), 56–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Guo, L., Shi, Y. et al. An edge computing oriented unified cryptographic key management service for financial context. Wireless Netw 30, 4003–4016 (2024). https://doi.org/10.1007/s11276-021-02831-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02831-8

Keywords

Navigation