Skip to main content
Log in

A periodic requests dispatcher for energy optimization of hybrid powered data centers

  • Published:
Wireless Networks Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To face with the surge of cloud computing services, energy problem and carbon mission constraint, more and more geo-distributed hybrid powered data centers are build over the world. Geo-distributed hybrid powered data centers are located in different locations equipped with different types of green energy source. In this work, we propose a periodic requests dispatcher, including a periodic model and a spatial balance algorithm, to minimize the brown energy use. The periodic model divides the long-term period into several time slots, and the spatial balance algorithm achieves energy optimization by balancing user requests in each time slot. Besides, a research case is simulated by Cloudsim platform. We conduct several comparative analysis in aspect of energy utilization, electricity cost and carbon emission. The experiment results show that the dispatcher can effectively reduce the electricity cost, and reasonably achieve the request distribution balance in geo-distributed hybrid powered data centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Deng, W., Liu, F. M., Jin, H., & Li, D. (2013). Leveraging renewable energy in cloud computing datacenters: State of the art and future research. Chinese Journal of Computers, 36(3), 582–598.

    Article  Google Scholar 

  2. Wu, Y., Tornatore, M., Ferdousi, S., & Mukherjee, B. (2017). Green data center placement in optical cloud networks. IEEE Transactions on Green Communications and Networking, 1(3), 347–357. https://doi.org/10.1109/TGCN.2017.2709327

    Article  Google Scholar 

  3. Liu, Z., Lin, M., Wierman, A., Low, S. H., & Andrew, L. L. H. (2011). Geographical load balancing with renewables. SIGMETRICS Perform. Evaluation Rev., 39(3), 62–66. https://doi.org/10.1145/2160803.2160862

    Article  Google Scholar 

  4. Liu, Z., Lin, M., Wierman, A., Low, S. H., & Andrew, L. L. H. (2011). Geographical load balancing with renewables. ACM SIGMETRICS Performance Evaluation Review, 39(3), 62–66. https://doi.org/10.1145/2160803.2160862

    Article  Google Scholar 

  5. Joseph Doyle, D.O., Robert Shorten. (2011). Server selection for carbon emission control. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Green Networking, pp. 1–6. Association for Computing Machinery, Toronto Ontario Canada

  6. Gu, C., Liu, C., Shi, C., He, Z., Huang, H., & Jia, X. (2015) A green scheduler for cloud data centers using renewable energy. In: International Conference on Algorithms and Architectures for Parallel ProcessingD, vol. 9531, pp. 476–491. Springer, Zhangjiajie, China. https://doi.org/10.1007/978-3-319-27140-8-33

  7. Gu, C., Liu, C., Zhang, J., Huang, H., & Jia, X. (2015). Green scheduling for cloud data centers using renewable resources. In: Conference on Computer Communications Workshops, pp. 354–359. IEEEE, Hong Kong, China. https://doi.org/10.1109/INFCOMW.2015.7179410

  8. B., Mahapatra R., Kumar A.K., Turuk S.K., Patra (2019) CLB: a multilevel co-operative load balancing algorithm for C-RAN architecture. Digital Communications and Networks 5(4) 308-316 10.1016/j.dcan.2019.10.003

    Article  Google Scholar 

  9. Xiang, X. (2014). Greening geo-distributed data centers by joint optimization of request routing and virtual machine scheduling. In: Proceedings of the 7th IEEE/ACM International Conference on Utility and Cloud Computing, pp. 1–10. IEEE, London, United Kingdom. https://doi.org/10.1109/UCC.2014.8

  10. Mandal, U., Habib, M., Zhang, S., Mukherjee, B., & Tornatore, M. (2013). Greening the cloud using renewable-energy-aware service migration. Network IEEE, 27(6), 36–43. https://doi.org/10.1109/MNET.2013.6678925

    Article  Google Scholar 

  11. Giacobbe, M., Celesti, A., Fazio, M., Villari, M., & Puliafito, A. (2015). An approach to reduce carbon dioxide emissions through virtual machine migrations in a sustainable cloud federation. In: 2015 Sustainable Internet and ICT for Sustainability, pp. 1–4. IEEE, Madrid, Spain. https://doi.org/10.1109/SustainIT.2015.7101383

  12. Hatzopoulos, D., Koutsopoulos, I., Koutitas, G., Van Heddeghem, W. (2013). Dynamic virtual machine allocation in cloud server facility systems with renewable energy sources. In: Proceedings of IEEE International Conference on Communications. IEEE, Budapest, Hungary. https://doi.org/10.1109/ICC.2013.6655225

  13. Rao, L., Liu, X., Xie, L., & Liu, W. (2010). Minimizing Electricity Cost: Optimization of Distributed Internet Data Centers in a Multi-Electricity-Market Environment. In: International Conference on Computer Communications, pp. 1145–1153. IEEE, San Diego, California, USA. https://doi.org/10.1109/INFCOM.2010.5461933

  14. Stewart, C., & Kai, S. (2009) Some joules are more precious than others: Managing renewable energy in the datacenter. In: Workshop on Power Aware Computing and Systems (HotPower), pp. 15–19. IEEE

  15. Li, J., Li, Z., Ren, K., & Liu, X. (2012). Towards optimal electric demand management for internet data centers. IEEE Transactions on Smart Grid, 3(1), 183–192.

    Article  Google Scholar 

  16. Elnozahy, E.N.M., Kistler, M., & Rajamony, R. (2002). Energy-efficient server clusters. In:Power-Aware Computer Systems, Second International Workshop, vol. 2325, pp. 179–196. Springer, Cambridge, Massachusetts, USA. https://doi.org/10.1007/3-540-36612-1-12

  17. Jaureguialzo, E. (2001). PUE: The Green Grid metric for evaluating the energy efficiency in DC (Data Center). Measurement method using the power demand. In: 2011 IEEE 33rd International Telecommunications Energy Conference, pp. 1–8. IEEE, Amsterdam, Netherlands. Amsterdam, Netherlands

  18. Bernabeu, E. (2013). Modeling geomagnetically induced currents in dominion virginia power using extreme 100-year geoelectric field scenarios—part 1. IEEE Transactions on Power Delivery, 28(1), 516–523. https://doi.org/10.1109/TPWRD.2012.2224141

    Article  Google Scholar 

  19. Zhang, Y., Wang, Y., & Wang, X. (2011). GreenWare: Greening cloud-scale data centers to maximize the use of renewable energy. In: ACM/IFIP/USENIX 12th International Middleware Conference, vol. 7049, pp. 143–164. Springer, Lisbon, Portugal. https://doi.org/10.1007/978-3-642-25821-3-8

  20. Sera, D., Teodorescu, R., & Rodriguez, P. (2007). PV panel model based on datasheet values. In: 2007 IEEE International Symposium on Industrial Electronics, pp. 2392–2396. IEEE, Vigo, Spain. https://doi.org/10.1109/ISIE.2007.4374981

  21. Li, C., Zhang, W., Cho, C.B., & Li, T. (2011). SolarCore: Solar energy driven multi-core architecture power management. In: 17th International Conference on High-Performance Computer Architecture, pp. 205–216. IEEE, San Antonio, Texas, USA

  22. Kaplan, O., & Temiz, M. (2017). A novel method based on Weibull distribution for short-term wind speed prediction. International Journal of Hydrogen Energy, 42(28), 17793–17800. https://doi.org/10.1016/j.ijhydene.2017.03.006

    Article  Google Scholar 

  23. DAmico, G., Petroni, F., & Prattico, F. (2015). Wind speed prediction for wind farm applications by extreme value theory and copulas. Journal of Wind Engineering and Industrial Aerodynamics, 145, 229–236. https://doi.org/10.1016/j.jweia.2015.06.018

  24. Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: A survey. IEEE Communication Surveys and Tutorials, 18(1), 732–794. https://doi.org/10.1109/COMST.2015.2481183

    Article  Google Scholar 

  25. Sinha, R., Purohit, N., & Diwanji, H. (2011). Power Aware Live Migration for Data Centers in Cloud using Dynamic Threshold. International Journal of Computer Technology & Applications, 02,(06)

  26. Song, J., Li, T., Wang, Z., & Zhu, Z. (2013). Study on energy-consumption regularities of cloud computing systems by a novel evaluation model. Computing, 95(4), 269–287. https://doi.org/10.1007/s00607-012-0218-8

    Article  Google Scholar 

  27. Liu, J., Zhao, F., Liu, X., & He, W. (2009). Challenges towards elastic power management in internet data centers. In: International Conference on Distributed Computing Systems Workshops, pp. 65–72. IEEE, Montreal, Quebec, Canada. https://doi.org/10.1109/ICDCSW.2009.44

  28. Zhang, Y., Wang, Y., & Wang, X. (2011) Capping the electricity cost of cloud-scale data centers with impacts on power markets. In: Proceedings of the 20th International Symposium on High Performance Distributed Computing, pp. 271–272. Association for Computing Machinery, California, USA. https://doi.org/10.1145/1996130.1996170

  29. Xu, Z., Tu, Y. C., & Wang, X. (2015). Online energy estimation of relational operations in database systems. IEEE Transactions on Computers, 64(11), 3223–3236. https://doi.org/10.1109/TC.2015.2394309

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of Liaoning Province(2020-BS-054) and Fundamental Research Funds for the Central Universities ( N2017005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Lu, G., Xu, C. et al. A periodic requests dispatcher for energy optimization of hybrid powered data centers. Wireless Netw 30, 4025–4042 (2024). https://doi.org/10.1007/s11276-021-02833-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02833-6

Keywords