Skip to main content
Log in

Online computation offloading for deadline-aware tasks in edge computing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Edge computing provides task offloading services to extend the computational capacity of mobile users and reduce task latency. Prior studies mainly focus on tasks with strict deadlines. However, in the real world, some tasks may not always have to be finished before hard deadlines, e.g., multimedia tasks. Tasks with soft deadlines can miss their primary deadlines, but not by too much, and still be timely. This has not been properly considered by existing offloading approaches. In this paper, we propose CONFECT, a novel offloading approach that handles tasks with mixtures of hard deadlines and soft deadlines. Specifically, we first formulate the problem as an integer linear programming and prove its hardness. Then, we propose two online algorithms with proven competitive ratios to solve the problem collectively, including an algorithm that assigns tasks to edge servers to maximize the task completion ratio and an algorithm that adjusts the task execution order to maximize the task completion revenue. Moreover, to balance the fairness among tasks and system revenue elastically, we extend CONFECT by using a tunable fairness knob. Finally, extensive experiments show that CONFECT outperforms five baseline algorithms in terms of task completion ratio and completion revenue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, Q., Huang, S., Opadere, J., & Han, T. (2018) . An edge network orchestrator for mobile augmented reality. In: IEEE INFOCOM, pp. 756–764 . https://doi.org/10.1109/INFOCOM.2018.8486241

  2. Wang, L., Jiao, L., He, T., Li, J., & Mühlhäuser, M. (2018) . Service entity placement for social virtual reality applications in edge computing. In: IEEE INFOCOM, pp. 468–476 . https://doi.org/10.1109/INFOCOM.2018.8486411

  3. Li, M., Si, P., & Zhang, Y. (2018). Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Transactions on Vehicular Technology, 67(10), 9073–9086. https://doi.org/10.1109/TVT.2018.2865211

    Article  Google Scholar 

  4. Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics, 3(2), 85–101. https://doi.org/10.26599/BDMA.2019.9020015

    Article  Google Scholar 

  5. Azrour, M., Mabrouki, J., Guezzaz, A., & Farhaoui, Y. (2021). New enhanced authentication protocol for internet of things. Big Data Mining and Analytics, 4(1), 1–9. https://doi.org/10.26599/BDMA.2020.9020010

    Article  Google Scholar 

  6. Mabrouki, J., Azrour, M., Fattah, G., Dhiba, D., & El Hajjaji, S. (2021). Intelligent monitoring system for biogas detection based on the internet of things: Mohammedia, morocco city landfill case. Big Data Mining and Analytics, 4(1), 10–17. https://doi.org/10.26599/BDMA.2020.9020017

    Article  Google Scholar 

  7. Zhou, X., Yang, X., Ma, J., Kevin, I., & Wang, K. (2021). Energy efficient smart routing based on link correlation mining for wireless edge computing in iot. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3077937

    Article  Google Scholar 

  8. Zhou, X., Xu, X., Liang, W., Zeng, Z., & Yan, Z. (2021). Deep learning enhanced multi-target detection for end-edge-cloud surveillance in smart iot. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3077449

    Article  Google Scholar 

  9. Chen, X. (2014). Decentralized computation offloading game for mobile cloud computing. IEEE Transactions on Parallel and Distributed Systems, 26(4), 974–983. https://doi.org/10.1109/TPDS.2014.2316834

    Article  Google Scholar 

  10. Tran, T. X., & Pompili, D. (2018). Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Transactions on Vehicular Technology, 68(1), 856–868. https://doi.org/10.1109/TVT.2018.2881191

    Article  Google Scholar 

  11. Bi, R., Liu, Q., Ren, J., & Tan, G. (2020). Utility aware offloading for mobile-edge computing. Tsinghua Science and Technology, 26(2), 239–250. https://doi.org/10.26599/TST.2019.9010062

    Article  Google Scholar 

  12. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012) . Fog computing and its role in the internet of things. In: ACM MCC workshop, pp. 13–16 . https://doi.org/10.1145/2342509.2342513

  13. He, T., Khamfroush, H., Wang, S., La Porta, T., & Stein, S. (2018) . It’s hard to share: joint service placement and request scheduling in edge clouds with sharable and non-sharable resources. In: IEEE ICDCS, pp. 365–375 . https://doi.org/10.1109/ICDCS.2018.00044

  14. Cai, Z., He, Z., Guan, X., & Li, Y. (2016). Collective data-sanitization for preventing sensitive information inference attacks in social networks. IEEE Transactions on Dependable and Secure Computing, 15(4), 577–590. https://doi.org/10.1109/TDSC.2016.2613521

    Article  Google Scholar 

  15. Cai, Z., & Zheng, X. (2018). A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Transactions on Network Science and Engineering, 7(2), 766–775. https://doi.org/10.1109/TNSE.2018.2830307

    Article  MathSciNet  Google Scholar 

  16. Cai, Z., & He, Z. (2019) . Trading private range counting over big iot data. In: ICDCS, pp. 144–153 . https://doi.org/10.1109/ICDCS.2019.00023

  17. Zheng, X., & Cai, Z. (2020). Privacy-preserved data sharing towards multiple parties in industrial iots. IEEE Journal on Selected Areas in Communications, 38(5), 968–979. https://doi.org/10.1109/JSAC.2020.2980802

    Article  Google Scholar 

  18. Cai, Z., Xiong, Z., Xu, H., Wang, P., Li, W., & Pan, Y. (2021). Generative adversarial networks: a survey towards private and secure applications. ACM Computing Surveys, 56(6), 1–38. https://doi.org/10.1145/3459992

    Article  Google Scholar 

  19. Zhou, X., Liang, W., Shimizu, S., Ma, J., & Jin, Q. (2020). Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 17(8), 5790–5798. https://doi.org/10.1109/TII.2020.3047675

    Article  Google Scholar 

  20. Zhang, C., Du, H., Ye, Q., Liu, C., & Yuan, H. (2019) . Dmra: A decentralized resource allocation scheme for multi-sp mobile edge computing. In: IEEE ICDCS, pp. 390–398 . https://doi.org/10.1109/ICDCS.2019.00046

  21. Liu, C., Li, K., Liang, J., & Li, K. (2019) . Cooper-sched: A cooperative scheduling framework for mobile edge computing with expected deadline guarantee. IEEE Transactions on Parallel and Distributed Systems pp. 1–1 . https://doi.org/10.1109/TPDS.2019.2921761

  22. Gao, B., Zhou, Z., Liu, F., & Xu, F. (2019) . Winning at the starting line: Joint network selection and service placement for mobile edge computing. In: IEEE INFOCOM, pp. 1459–1467 . https://doi.org/10.1109/INFOCOM.2019.8737543

  23. Wang, F., Xu, J., Wang, X., & Cui, S. (2017). Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Transactions on Wireless Communications, 17(3), 1784–1797. https://doi.org/10.1109/TWC.2017.2785305

    Article  Google Scholar 

  24. Meng, J., Tan, H., Xu, C., Cao, W., Liu, L., & Li, B. (2019) . Dedas: Online task dispatching and scheduling with bandwidth constraint in edge computing. In: IEEE INFOCOM, pp. 2287–2295 . https://doi.org/10.1109/INFOCOM.2019.8737577

  25. Guezzaz, A., Asimi, Y., Azrour, M., & Asimi, A. (2021). Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection. Big Data Mining and Analytics, 4(1), 18–24. https://doi.org/10.26599/BDMA.2020.9020019

    Article  Google Scholar 

  26. Zhou, X., Liang, W., Kevin, I., Wang, K., Huang, R., & Jin, Q. (2021). Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data. IEEE Transactions on Emerging Topics in Computing, 9(1), 246–257. https://doi.org/10.1109/TETC.2018.2860051

    Article  Google Scholar 

  27. Long, C., Cao, Y., Jiang, T., & Zhang, Q. (2017). Edge computing framework for cooperative video processing in multimedia iot systems. IEEE Transactions on Multimedia, 20(5), 1126–1139. https://doi.org/10.1109/TMM.2017.2764330

    Article  Google Scholar 

  28. Zhang, S., Liang, Y., Ge, J., Xiao, M., & Wu, J. (2020). Provably efficient resource allocation for edge service entities using hermes. IEEE/ACM Transactions on Networking, 28(4), 1864–1879. https://doi.org/10.1109/TNET.2020.2989307

    Article  Google Scholar 

  29. Rafique, W., He, X., Liu, Z., Sun, Y., & Dou, W. (2019) . Cfadefense: A security solution to detect and mitigate crossfire attacks in software-defined iot-edge infrastructure. In: IEEE HPCC, pp. 500–509 . https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00080

  30. Tan, H., Han, Z., Li, X.Y., & Lau, F.C. (2017). Online job dispatching and scheduling in edge-clouds. In: IEEE INFOCOM, pp. 1–9 . https://doi.org/10.1109/INFOCOM.2017.8057116

  31. Cherkasova, L., Gupta, D., & Vahdat, A. (2007). Comparison of the three cpu schedulers in xen. Performance Evaluation Review, 35(2), 42. https://doi.org/10.1145/1330555.1330556

    Article  Google Scholar 

  32. Baek, H., Jung, N., Chwa, H. S., Shin, I., & Lee, J. (2018). Non-preemptive scheduling for mixed-criticality real-time multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems, 29(8), 1766–1779. https://doi.org/10.1109/TPDS.2018.2806443

    Article  Google Scholar 

  33. Han, Z., Tan, H., Li, X. Y., Jiang, S. H. C., Li, Y., & Lau, F. C. (2019). Ondisc: Online latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM Transactions on Networking, 27(6), 2472–2485. https://doi.org/10.1109/TNET.2019.2953806

    Article  Google Scholar 

  34. Guo, F., Zhang, H., Ji, H., Li, X., & Leung, V. C. (2018). An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Transactions on Networking, 26(6), 2651–2664. https://doi.org/10.1109/TNET.2018.2873002

    Article  Google Scholar 

  35. Chen, N., Wang, Z., He, R., Jiang, J., Cheng, F., & Han, C. (2021). Efficient scheduling mapping algorithm for row parallel coarse-grained reconfigurable architecture. Tsinghua Science and Technology, 26(5), 724–735. https://doi.org/10.26599/TST.2020.9010035

    Article  Google Scholar 

  36. Zhang, Z., Cong, X., Feng, W., Zhang, H., Fu, G., & Chen, J. (2020). Waeas: An optimization scheme of eas scheduler for wearable applications. Tsinghua Science and Technology, 26(1), 72–84. https://doi.org/10.26599/TST.2019.9010040

    Article  Google Scholar 

  37. Fu, Y., Hou, Y., Wang, Z., Wu, X., Gao, K., & Wang, L. (2021). Distributed scheduling problems in intelligent manufacturing systems. Tsinghua Science and Technology, 26(5), 625–645. https://doi.org/10.26599/TST.2021.9010009

    Article  Google Scholar 

  38. Ahmad, F., Mahmud, S. A., & Yousaf, F. Z. (2016). Shortest processing time scheduling to reduce traffic congestion in dense urban areas. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(5), 838–855. https://doi.org/10.1109/TSMC.2016.2521838

    Article  Google Scholar 

  39. Liu, F., Narayanan, A., & Bai, Q. (2000) . Real-time systems

  40. Plankensteiner, K., & Prodan, R. (2011). Meeting soft deadlines in scientific workflows using resubmission impact. IEEE transactions on parallel and distributed systems, 23(5), 890–901. https://doi.org/10.1109/TPDS.2011.221

    Article  Google Scholar 

  41. Luo, L., Yu, H., Ye, Z., & Du, X. (2018). Online deadline-aware bulk transfer over inter-datacenter wans. In: IEEE INFOCOM, pp. 630–638 . https://doi.org/10.1109/INFOCOM.2018.8485828

  42. Zhang, H., Chen, K., Bai, W., Han, D., Tian, C., Wang, H., Guan, H., & Zhang, M. (2016). Guaranteeing deadlines for inter-data center transfers. IEEE/ACM transactions on networking, 25(1), 579–595. https://doi.org/10.1109/TNET.2016.2594235

    Article  Google Scholar 

  43. Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons.

    Google Scholar 

  44. Jiang, S., Li, X., & Wu, J. (2019). Hierarchical edge-cloud computing for mobile blockchain mining game. In: IEEE ICDCS, pp. 1327–1336 . https://doi.org/10.1109/ICDCS.2019.00133

  45. Cheng, S., Chen, Z., Li, J., & Gao, H. (2019) . Task assignment algorithms in data shared mobile edge computing systems. In: IEEE ICDCS, pp. 997–1006 . https://doi.org/10.1109/ICDCS.2019.00103

  46. Sundar, S., & Liang, B. (2018). Offloading dependent tasks with communication delay and deadline constraint. In: IEEE INFOCOM, pp. 37–45 . https://doi.org/10.1109/INFOCOM.2018.8486305

  47. Champati, J.P., & Liang, B. (2017) . Single restart with time stamps for computational offloading in a semi-online setting. In: IEEE INFOCOM, pp. 1–9 . https://doi.org/10.1109/INFOCOM.2017.8057149

  48. Chen, X., Jiao, L., Li, W., & Fu, X. (2015). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808. https://doi.org/10.1109/TNET.2015.2487344

    Article  Google Scholar 

  49. Guo, S., Xiao, B., Yang, Y., & Yang, Y. (2016). Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In: IEEE INFOCOM, pp. 1–9 . https://doi.org/10.1109/INFOCOM.2016.7524497

  50. Loh, K.H., Golden, B., & Wasil, E. (2009). Solving the maximum cardinality bin packing problem with a weight annealing-based algorithm. In: Operations Research and Cyber-Infrastructure, pp. 147–164 . https://doi.org/10.1007/978-0-387-88843-9_8

  51. Buchbinder, N., & Naor, J. S. (2009). The design of competitive online algorithms via a primal-dual approach. Foundations and Trends in Theoretical Computer Science, 3(2–3), 93–263.

    Article  MathSciNet  Google Scholar 

  52. Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79. https://doi.org/10.1109/MWC.2016.7422408

    Article  Google Scholar 

  53. Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE Transactions on Parallel and Distributed Systems, 12(10), 1094–1104. https://doi.org/10.1109/71.963420

    Article  Google Scholar 

  54. Grandl, R., Kandula, S., Rao, S., Akella, A., & Kulkarni, J. (2016). \(\{\)GRAPHENE\(\}\): Packing and dependency-aware scheduling for data-parallel clusters. In: USENIX OSDI, pp. 81–97 . https://doi.org/10.1007/978-0-387-88843-9_8

  55. Kay, J., & Lauder, P. (1988). A fair share scheduler. Communications of the ACM, 31(1), 44–55. https://doi.org/10.1145/35043.35047

    Article  Google Scholar 

  56. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., & Akella, A. (2014). Multi-resource packing for cluster schedulers. In: SIGCOMM, pp. 455–466 . https://doi.org/10.1145/2740070.2626334

  57. Wang, W., Ma, S., Li, B., & Li, B. (2017). Coflex: Navigating the fairness-efficiency tradeoff for coflow scheduling. In: INFOCOM, pp. 1–9 . https://doi.org/10.1109/INFOCOM.2017.8057172

  58. Lai, P., He, Q., Abdelrazek, M., Chen, F., Hosking, J., Grundy, J., & Yang, Y. (2018). Optimal edge user allocation in edge computing with variable sized vector bin packing. In: Springer ICSOC, pp. 230–245 . https://doi.org/10.1007/978-3-030-03596-9_15

  59. Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile edge computing-a key technology towards 5g. ETSI white paper, 11(11), 1–16.

  60. IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/products/ilog-cplex-optimization-studio

  61. You, C., Huang, K., Chae, H., & Kim, B. H. (2017). Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3), 1397–1411. https://doi.org/10.1109/TWC.2016.2633522

    Article  Google Scholar 

  62. Chen, M.H., Liang, B., & Dong, M. (2017) . Joint offloading and resource allocation for computation and communication in mobile cloud with computing access point. In: IEEE INFOCOM, pp. 1–9 . https://doi.org/10.1109/INFOCOM.2017.8057150

  63. Zhao, G., Xu, H., Zhao, Y., Qiao, C., & Huang, L. (2020) . Offloading dependent tasks in mobile edge computing with service caching. In: IEEE INFOCOM, pp. 1–10 . https://doi.org/10.1109/INFOCOM41043.2020.9155396

  64. Zhang, C., Tan, H., Huang, H., Han, Z., Jiang, S.H.C., Freris, N., & Li, X.Y. (2020) .Online dispatching and scheduling of jobs with heterogeneous utilities in edge computing. In: ACM MobiHoc, pp. 101–110 . https://doi.org/10.1145/3397166.3409122

  65. Zhou, X., Li, Y., & Liang, W. (2021). Cnn-rnn based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(3), 912–921. https://doi.org/10.1109/TCBB.2020.2994780

    Article  Google Scholar 

  66. Zhou, X., Xu, X., Liang, W., Zeng, Z., Shimizu, S., Yang, L. T., & Jin, Q. (2021). Intelligent small object detection based on digital twinning for smart manufacturing in industrial cps. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2021.3061419

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all reviewers for their valuable comments. This work was supported in part by the National Key R&D Program of China under Grant No. 2020YFB1707600, the Natural Science Foundation of Jiangsu Province under Grant No. BK20 201248, the Open Fund of PDL under Grant No. WDZC20205500109, the National Natural Science Foundation of China under Grant No. 61802172, and the Program A for Outstanding Ph.D. Candidates of Nanjing University under Grant No.202001A014. The corresponding author is Wanchun Dou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zheng, J., He, Q. et al. Online computation offloading for deadline-aware tasks in edge computing. Wireless Netw 30, 4073–4092 (2024). https://doi.org/10.1007/s11276-021-02864-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02864-z

Keywords