Skip to main content

Advertisement

Log in

Routing protocols classification for underwater wireless sensor networks based on localization and mobility

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Underwater wireless sensor network (UWSN) is a new technolog that can be used for various purposes, including ocean tracking and underwater exploration, military surveillance, disaster management, industrial applications, and scientific research. These applications require the sensed data to be routed to the destination, and this results in making the data routing one of the essential parts in designing such applications. High propagation delay, restricted bandwidth, 3D deployment, and energy constraints are some of the challenges that UWSN faces when developing routing protocols. Therefore, to mitigate these challenges, efficient routing protocols are proposed according to the specific application. This paper surveys recently routing protocols for UWSN. Furthermore, each routing protocol's main idea and essential operation are presented and its merits and demerits. There are two types of routing protocols surveyed: location-based and location-free routing protocols. Each type is divided into two sub-categories: those that take into account node mobility and those that do not. The surveyed protocols are evaluated through the analytical method in which these protocols are compared through a wide range of parameters like packet delivery ratio, end-to-end delay, energy efficiency, and reliability. Some of the surveyed protocols are evaluated through the numerical simulation method by using Aqua-Sim with NS2.30 and are compared through packet delivery ratio, end-to-end delay, and energy consumption. This survey’s core goal is to encourage more research into improving UWSN routing protocols for better underwater exploration and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khan, H., Hassan, S. A., & Jung, H. (2020). On underwater wireless sensor networks routing protocols: A review. IEEE Sensors Journal, 20(18), 10371–10386.

    Google Scholar 

  2. Haque, K. F., Kabir, K. H., & Abdelgawad, A. (2020). Advancement of routing protocols and applications of underwater wireless sensor network (UWSN)—A Survey. Journal of Sensor and Actuator Networks, 9(2), 19.

    Google Scholar 

  3. Jawhar, I., Mohamed, N., Al-Jaroodi, J., & Zhang, S. (2018). An architecture for using autonomous underwater vehicles in wireless sensor networks for underwater pipeline monitoring. IEEE Transactions on Industrial Informatics, 15(3), 1329–1340.

    Google Scholar 

  4. Santana Sosa, G., Santana Abril, J., Sosa, J., Montiel-Nelson, J. A., & Bautista, T. (2020). Design of a practical underwater sensor network for offshore fish farm cages. Sensors, 20(16), 4459.

    Google Scholar 

  5. Murad, M., Murad, M., Sheikh, A. A., Manzoor, M. A., Felemban, E., & Qaisar, S. (2015). A survey on current underwater acoustic sensor network applications. International Journal of Computer Theory and Engineering, 7(1), 51.

    Google Scholar 

  6. Du, X., Liu, X., & Su, Y. (2016). Underwater acoustic networks test bed for ecological monitoring of Qinghai Lake. In OCEANS 2016-Shanghai. IEEE.

  7. Zhou, Y., Chen, K., He, J., & Guan, H. (2011). Enhanced slotted aloha protocols for underwater sensor networks with large propagation delay. In 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring). IEEE.

  8. Ayaz, M., & Abdullah, A. (2009). Underwater wireless sensor networks: Routing issues and future challenges. In Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia (pp. 370–375) Association for Computing Machinery.

  9. Lanbo, L., Shengli, Z., & Jun-Hong, C. (2008). Prospects and problems of wireless communication for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 977–994.

    Google Scholar 

  10. Nayyar, A., Puri, V., & Le, D.-N. (2019). Comprehensive analysis of routing protocols surrounding underwater sensor networks (UWSNs). Data Management, Analytics and Innovation (pp. 435–450). Springer.

    Google Scholar 

  11. Wahid, A., & Kim, D. (2012). An energy efficient localization-free routing protocol for underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 8(4), 307246.

    Google Scholar 

  12. Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Chizari, H. (2017). Next forwarding node selection in underwater wireless sensor networks (UWSNs): Techniques and challenges. Information, 8(1), 3.

    Google Scholar 

  13. Khalid, M., Ullah, Z., Ahmad, N., Arshad, M., Jan, B., Cao, Y., & Adnan, A. (2017). A survey of routing issues and associated protocols in underwater wireless sensor networks. Journal of Sensors, 2017.

  14. Islam, T., & Lee, Y. K. (2019). A comprehensive survey of recent routing protocols for underwater acoustic sensor networks. Sensors, 19(19), 4256.

    Google Scholar 

  15. Li, N., Martínez, J. F., Meneses Chaus, J. M., & Eckert, M. (2016). A survey on underwater acoustic sensor network routing protocols. Sensors, 16(3), 414.

    Google Scholar 

  16. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2018). Underwater wireless sensor networks: A new challenge for topology control–based systems. ACM Computing Surveys, 51(1), 1–36.

    Google Scholar 

  17. Fattah, S., Gani, A., Ahmedy, I., Idris, M. Y. I., & Targio Hashem, I. A. (2020). A survey on underwater wireless sensor networks: Requirements, taxonomy, recent advances, and open research challenges. Sensors, 20(18), 5393. https://doi.org/10.3390/s20185393.

    Article  Google Scholar 

  18. Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.

    Google Scholar 

  19. Felemban, E., Shaikh, F. K., Qureshi, U. M., Sheikh, A. A., & Qaisar, S. B. (2015). Underwater sensor network applications: A comprehensive survey. International Journal of Distributed Sensor Networks, 11(11), 896832.

    Google Scholar 

  20. Wang, Y. (2014). Three-dimensional wireless sensor networks: Geometric approaches for topology and routing design. The Art of Wireless Sensor Networks (pp. 367–409). Springer.

    Google Scholar 

  21. Al-Salti, F. A., Bassel, A., & Abderezak, T. (2018). An overview survey of recent routing protocols for underwater wireless sensor networks. Sultan Qaboos University Journal for Science [SQUJS], 23(2), 95–110.

    Google Scholar 

  22. Khalil, I. M., Gadallah, Y., Hayajneh, M., & Khreishah, A. (2012). An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks. Sensors, 12(7), 8782–8805.

    Google Scholar 

  23. Wang, Y., Liu, Y., & Guo, Z. (2012). Three-dimensional ocean sensor networks: A survey. Journal of Ocean University of China, 11(4), 436–450.

    Google Scholar 

  24. Luo, J., Yang, Y., Wang, Z., & Chen, Y. (2021). Localization algorithm for underwater sensor network: A review. IEEE Internet of Things Journal.

  25. Wu, W., Wang, X., Hawbani, A., Liu, P., Zhao, L., & Al-Dubai, A. Y. (2021). FLORA: Fuzzy based load-balanced opportunistic routing for asynchronous duty-cycled WSNs. IEEE Transactions on Mobile Computing.

  26. Liu, P., Wang, X., Hawbani, A., Busaileh, O., Zhao, L., & Al-Dubai, A. (2019). Frca: A novel flexible routing computing approach for wireless sensor networks. IEEE Transactions on Mobile Computing, 19(11), 2623–2639.

    Google Scholar 

  27. Hawbani, A., Wang, X., Zhao, L., Al-Dubai, A., Min, G., & Busaileh, O. (2020). Novel architecture and heuristic algorithms for software-defined wireless sensor networks. IEEE/ACM Transactions on Networking, 28(6), 2809–2822. https://doi.org/10.1109/TNET.2020.3020984.

    Article  Google Scholar 

  28. Busaileh, O., Hawbani, A., Wang, X., Liu, P., Zhao, L., & Al-Dubai, A. Y. (2020). Tuft: Tree based heuristic data dissemination for mobile sink wireless sensor networks. IEEE Transactions on Mobile Computing,. https://doi.org/10.1109/TMC.2020.3022403.

    Article  Google Scholar 

  29. Lei, W., Wang, D., Xie, Y., Chen, B., Hu, X., & Chen, H. (2012). Implementation of a high reliable chirp underwater acoustic modem. In 2012 Oceans-Yeosu. IEEE.

  30. Jouhari, M., Ibrahimi, K., Tembine, H., & Ben-Othman, J. (2019). Underwater wireless sensor networks: A survey on enabling technologies, localization protocols, and internet of underwater things. IEEE Access, 7, 96879–96899.

    Google Scholar 

  31. Sun, Y., Yuan, Y., Xu, Q., Hua, C., & Guan, X. (2019). A mobile anchor node assisted RSSI localization scheme in underwater wireless sensor networks. Sensors, 19(20), 4369. https://doi.org/10.3390/s19204369.

    Article  Google Scholar 

  32. Yan, J., Xu, Z., Wan, Y., Chen, C., & Luo, X. (2017). Consensus estimation-based target localization in underwater acoustic sensor networks. International Journal of Robust and Nonlinear Control, 27(9), 1607–1627t.

    MathSciNet  MATH  Google Scholar 

  33. Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2010). Localization techniques for underwater acoustic sensor networks. IEEE Communications Magazine, 48(12), 152–158.

    Google Scholar 

  34. Nageswararao, K., & Prasan, U. D. (2012). A survey on underwater sensor networks localization techniques. International Journal of Engineering Research and Development, 4, 1–6.

    Google Scholar 

  35. Beniwal, M., & Singh, R. (2014). Localization techniques and their challenges in underwater wireless sensor networks. International Journal of Computer Science and Information Technologies, 5(3), 4706–4710.

    Google Scholar 

  36. Shahapur, S. S., & Khanai, R. (2016). Localization, routing and its security in UWSN—A survey. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE.

  37. Fengzhong, Q., Shiyuan, W., Zhihui, W. U., & Zubin, L. I. U. (2016). A survey of ranging algorithms and localization schemes in underwater acoustic sensor network. China Communications, 13(3), 66–81.

    Google Scholar 

  38. Anil, C., & Mathew, S. (2014). A survey and comparison study of auv based localization in underwater sensor networks. International Journal of Engineering, 3(12), 23–29.

    Google Scholar 

  39. Tuna, G., & Gungor, V. C. (2017). A survey on deployment techniques, localization algorithms, and research challenges for underwater acoustic sensor networks. International Journal of Communication Systems, 30(17), e3350.

    Google Scholar 

  40. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). An opportunistic void avoidance routing protocol for underwater sensor networks. In 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA). IEEE.

  41. Yao, P., & Zhao, S. (2018). Three-dimensional path planning for AUV based on interfered fluid dynamical system under ocean current (June 2018). IEEE Access, 6, 42904–42916.

    Google Scholar 

  42. Khan, J. U., & Cho, H.-S. (2016). Data-gathering scheme using AUVS in large-scale underwater sensor networks: A multihop approach. Sensors, 16(10), 1626.

    Google Scholar 

  43. Yoon, S., & Qiao, C. (2010). Cooperative search and survey using autonomous underwater vehicles (AUVs). IEEE Transactions on Parallel and Distributed Systems, 22(3), 364–379.

    Google Scholar 

  44. Zhang, B., Wang, Y., Wang, H., Guan, X., & Zhuang, Z. (2017). Tracking a duty-cycled autonomous underwater vehicle by underwater wireless sensor networks. IEEE Access, 5, 18016–18032.

    Google Scholar 

  45. Javaid, N., Ilyas, N., Ahmad, A., Alrajeh, N., Qasim, U., Khan, Z. A., Liaqat, T., & Khan, M. I. (2015). An efficient data-gathering routing protocol for underwater wireless sensor networks. Sensors, 15(11), 29149–29181.

    Google Scholar 

  46. Khan, A., Ahmedy, I., Anisi, M. H., Javaid, N., Ali, I., Khan, N., Alsaqer, M., & Mahmood, H. (2018). A localization-free interference and energy holes minimization routing for underwater wireless sensor networks. Sensors, 18(1), 165.

    Google Scholar 

  47. Gupta, O., & Goyal, N. (2021). The evolution of data gathering static and mobility models in underwater wireless sensor networks: A survey. Journal of Ambient Intelligence and Humanized Computing, 1–17.

  48. Yu, H., Yao, N., & Liu, J. (2015). An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Networks, 34, 121–143.

    Google Scholar 

  49. Dhurandher, S. K., Obaidat, M. S., & Gupta, M. (2010). A novel geocast technique with hole detection in underwater sensor networks. In ACS/IEEE International Conference on Computer Systems and Applications-AICCSA 2010. IEEE.

  50. Chen, Y., & Lin, Y. (2013). Mobicast routing protocol for underwater sensor networks. IEEE Sensors Journal, 13(2), 737–749. https://doi.org/10.1109/JSEN.2012.2226877

    Article  Google Scholar 

  51. Lee, U., Wang, P., Noh, Y., Vieira, L. F., Gerla, M., & Cui, J. H. (2010). Pressure routing for underwater sensor networks. In 2010 Proceedings IEEE INFOCOM. IEEE.

  52. Barbeau, M., Blouin, S., Cervera, G., Garcia-Alfaro, J., & Kranakis, E. (2015). Location-free link state routing for underwater acoustic sensor networks. In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE.

  53. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2016). A novel cooperative opportunistic routing scheme for underwater sensor networks. Sensors, 16(3), 297.

    Google Scholar 

  54. Chen, J., Wu, X., & Chen, G. (2008). REBAR: A reliable and energy balanced routing algorithm for UWSNs. In 2008 Seventh International Conference on Grid and Cooperative Computing. IEEE.

  55. Xie, P., Zhou, Z., Peng, Z., Cui, J. H., & Shi, Z. (2009). Void avoidance in three-dimensional mobile underwater sensor networks. In International Conference on Wireless Algorithms, Systems, and Applications. Springer.

  56. Hwang, D., & Kim, D. (2008). DFR: Directional flooding-based routing protocol for underwater sensor networks. In OCEANS 2008. 2008. IEEE.

  57. Chirdchoo, N., Soh, W. S. & Chua, K. C. (2009). Sector-based routing with destination location prediction for underwater mobile networks. In 2009 International Conference on Advanced Information Networking and Applications Workshops. IEEE.

  58. Anupama, K., Sasidharan A., & Vadlamani, S. (2008). A location-based clustering algorithm for data gathering in 3D underwater wireless sensor networks. In 2008 International Symposium on Telecommunications. IEEE.

  59. Xie, P., Cui, J. H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks. In International Conference on Research in Networking. Springer.

  60. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2014). GEDAR: Geographic and opportunistic routing protocol with depth adjustment for mobile underwater sensor networks. In 2014 IEEE International Conference on Communications (ICC). IEEE.

  61. Yan, H., Shi, Z. J., & Cui, J.-H. (2008). DBR: Depth-based routing for underwater sensor networks. In International Conference on Research in Networking. Springer.

  62. Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2012). VAPR: Void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908.

    Google Scholar 

  63. Feng, X., Wang, Z., Liu, X., & Liu, J. (2015). ADCNC-MAC: asynchronous duty cycle with network-coding MAC protocol for underwater acoustic sensor networks. EURASIP Journal on Wireless Communications Networking, 2015(1), 1–10.

    Google Scholar 

  64. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2018). A joint anypath routing and duty-cycling model for sustainable underwater sensor networks. IEEE Transactions on Sustainable Computing, 4(4), 314–325.

    Google Scholar 

  65. Ahmed, M., Salleh, M., & Channa, M. I. (2017). Routing protocols based on node mobility for Underwater Wireless Sensor Network (UWSN): A survey. Journal of Network and Computer Applications, 78, 242–252.

    Google Scholar 

  66. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2018). An efficient AUV-aided data collection in underwater sensor networks. In 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA). IEEE.

  67. Khan, M. T. R., Ahmed, S. H., Jembre, Y. Z., & Kim, D. (2019). An energy-efficient data collection protocol with AUV path planning in the Internet of Underwater Things. Journal of Network and Computer Applications, 135, 20–31.

    Google Scholar 

  68. Han, G., Long, X., Zhu, C., Guizani, M., Bi, Y., & Zhang, W. (2019). An AUV location prediction-based data collection scheme for underwater wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(6), 6037–6049.

    Google Scholar 

  69. Zhuo, X., Liu, M., Wei, Y., Yu, G., Qu, F., & Sun, R. (2020). AUV-aided energy-efficient data collection in underwater acoustic sensor networks. IEEE Internet of Things Journal, 7(10), 10010–10022.

    Google Scholar 

  70. Khan, I. U., Islam, M., Ismail, M., Qazi, A. B., Jan, S., Ullah, I., Farid, Z., & Wadud, Z. (2020). Adaptive hop-by-hop cone vector-based forwarding protocol for underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 16(9), 1550147720958305.

    Google Scholar 

  71. Ismail, M., Islam, M., Ahmad, I., Khan, F. A., Qazi, A. B., Khan, Z. H., Wadud, Z., & Al-Rakhami, M. (2020). Reliable path selection and opportunistic routing protocol for underwater wireless sensor networks. IEEE Access, 8, 100346–100364.

    Google Scholar 

  72. Climent, S., Sanchez, A., Capella, J. V., Meratnia, N., & Serrano, J. J. (2014). Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers. Sensors, 14(1), 795–833.

    Google Scholar 

  73. Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing.

  74. Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 34–43.

    Google Scholar 

  75. Harris III, A. F., & Zorzi, M. (2007). Modeling the underwater acoustic channel in ns2. In ValueTools, p. 18.

  76. Ismail, N. S. N., Hussein, L. A., & Ariffin, S. H. (2010). Analyzing the performance of acoustic channel in underwater wireless sensor network (UWSN). In 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. IEEE.

  77. Kularia, Y., Kohli, S., & Bhattacharya, P. P. (2016). Analysis of acoustic channel characteristics for underwater wireless sensor networks. International Journal of Computational Science, Information Technology and Control Engineering, 3(1/2).

  78. Cato, D. H. (2008). Ocean ambient noise: Its measurement and its significance to marine animals. Proceedings of the Institute of Acoustics, 30(5), 1–9.

    Google Scholar 

  79. Zhou, Z., Peng, Z., Cui, J., Shi, Z., & Bagtzoglou, A. (2010). Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing, 10(3), 335–348. https://doi.org/10.1109/TMC.2010.158.

    Article  Google Scholar 

  80. Alkindi, Z., Alzeidi, N., Arafehand, B., & Touzene, A. (2018). Performance evaluation of grid based routing protocol for underwater wireless sensor networks under different mobility models. International Journal of Wireless & Mobile Networks 10.

  81. Ribeiro, A., & Sofia, R. C. (2011). A survey on mobility models for wireless networks. SITI, University Lusófona.

    Google Scholar 

  82. Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic properties of the random waypoint mobility model. Wireless Networks, 10(5), 555–567.

    Google Scholar 

  83. Wang, K.H., & Li, B. (2002). Group mobility and partition prediction in wireless ad-hoc networks. In 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No. 02CH37333). IEEE.

  84. Namesh, C., & Ramakrishnan, B. (2015). Analysis of VBF protocol in underwater sensor network for static and moving nodes. International Journal of Computer Networks and Applications, 2(1), 20–26.

    Google Scholar 

  85. Nicolaou, N., See, A., Xie, P., Cui, J. H., & Maggiorini, D. (2007). Improving the robustness of location-based routing for underwater sensor networks. In Oceans 2007-Europe. IEEE.

  86. El-Rabaie, S., Nabil, D., Mahmoud, R., & Alsharqawy, M. A. (2015). Underwater wireless sensor networks (UWSN), architecture, routing protocols, simulation and modeling tools, localization, security issues and some novel trends. Networking and Communication Engineering, 7(8), 335–354.

    Google Scholar 

  87. Ibrahim, D. M., Eltobely, T. E., Fahmy, M. M., & Sallam, E. A. (2014). Enhancing the vector-based forwarding routing protocol for underwater wireless sensor networks: a clustering approach. In International Conference on Wireless and Mobile Communications

  88. Rani, S., Ahmed, S. H., Malhotra, J., & Talwar, R. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 42–50.

    Google Scholar 

  89. Hou, R., He, L., Hu, S., & Luo, J. (2018). Energy-balanced unequal layering clustering in underwater acoustic sensor networks. IEEE Access, 6, 39685–39691.

    Google Scholar 

  90. Jiang, J., Han, G., Guo, H., Shu, L., & Rodrigues, J. J. (2016). Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks. Journal of Network and Computer Applications, 59, 4–13.

    Google Scholar 

  91. Tariq, M., Latiff, M. S., Ayaz, M., Coulibaly, Y., & Al-Areqi, N. (2015). Distance based reliable and energy efficient (DREE) routing protocol for underwater acoustic sensor networks. Journal of Networks, 10(5), 311.

    Google Scholar 

  92. Javaid, N., Cheema, S., Akbar, M., Alrajeh, N., Alabed, M. S., & Guizani, N. (2017). Balanced energy consumption based adaptive routing for IoT enabling underwater WSNs. IEEE Access, 5, 10040–10051.

    Google Scholar 

  93. Wang, S., Nguyen, T. L., & Shin, Y. (2018). Data collection strategy for magnetic induction based monitoring in underwater sensor networks. IEEE Access, 6, 43644–43653.

    Google Scholar 

  94. Wan, Z., Liu, S., Ni, W., & Xu, Z. (2019). An energy-efficient multi-level adaptive clustering routing algorithm for underwater wireless sensor networks. Cluster Computing, 22(6), 14651–14660.

    Google Scholar 

  95. Ayaz, M., & Abdullah, A. (2009). Hop-by-hop dynamic addressing based (H2-DAB) routing protocol for underwater wireless sensor networks. In 2009 International Conference on Information and Multimedia Technology. IEEE.

  96. Ahmed, M., Salleh, M., & Channa, M. I. (2018). CBE2R: Clustered-based energy efficient routing protocol for underwater wireless sensor network. International Journal of Electronics, 105(11), 1916–1930.

    Google Scholar 

  97. Wahid, A., Lee, S., Jeong, H. J., & Kim, D. (2011). Eedbr: Energy-efficient depth-based routing protocol for underwater wireless sensor networks. In International Conference on Advanced Computer Science and Information Technology. Springer.

  98. Yu, H., Yao, N., Wang, T., Li, G., Gao, Z., & Tan, G. (2016). WDFAD-DBR: Weighting depth and forwarding area division DBR routing protocol for UASNs. Ad Hoc Networks, 37, 256–282.

    Google Scholar 

  99. Das, D., & Ameer, P. (2017). Energy efficient geographic clustered multi-hop routing for underwater sensor networks. In TENCON 2017–2017 IEEE Region 10 Conference. IEEE.

  100. Zhu, F., & Wei, J. (2018). An energy efficient routing protocol based on layers and unequal clusters in underwater wireless sensor networks. Journal of Sensors.

  101. Khan, W., Wang, H., Anwar, M. S., Ayaz, M., Ahmad, S., & Ullah, I. (2019). A multi-layer cluster based energy efficient routing scheme for UWSNs. IEEE Access, 7, 77398–77410.

    Google Scholar 

  102. Coutinho, R. W., Boukerche, A., Vieira, L. F., & Loureiro, A. A. (2017). EnOR: Energy balancing routing protocol for underwater sensor networks. In 2017 IEEE International Conference on Communications (ICC). IEEE.

  103. Guan, Q., Ji, F., Liu, Y., Yu, H., & Chen, W. (2019). Distance-vector-based opportunistic routing for underwater acoustic sensor networks. IEEE Internet of Things Journal, 6(2), 3831–3839.

    Google Scholar 

  104. Ullah, U., Khan, A., Altowaijri, S. M., Ali, I., Rahman, A. U., Kumar, V. V., Ali, M., & Mahmood, H. (2019). Cooperative and delay minimization routing schemes for dense underwater wireless sensor networks. Symmetry, 11(2), 195.

    Google Scholar 

  105. Ullah, U., Shahid, A. R., Irfan, M., Qadir, J., Nawaz, M., & Qureshi, R. A. (2019). stable and reliable short-path routing scheme for efficient acoustic wireless sensor networks (AWSNs). IEEE Access, 8, 1458–1474.

    Google Scholar 

  106. Xie, P., Zhou, Z., Peng, Z., Yan, H., Hu, T., Cui, J. H., Shi, Z., Fei, Y., & Zhou, S. (2009). Aqua-Sim: An NS-2 based simulator for underwater sensor networks. In OCEANS 2009. IEEE.

Download references

Funding

This paper is supported by the National Natural Science Foundation of China (NO. 61772490)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XingFu Wang or Ammar Hawbani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A.S., Wang, X., Hawbani, A. et al. Routing protocols classification for underwater wireless sensor networks based on localization and mobility. Wireless Netw 28, 797–826 (2022). https://doi.org/10.1007/s11276-021-02880-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02880-z

Keywords

Navigation