Skip to main content
Log in

A simple R-UAV permission-based distributed mutual exclusion in FANET

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Mutual exclusion problem in the distributed system is a very basic and highly researched area in this domain. Various distributed mutual exclusion (DME) protocols exist till date to fulfill such cases on static as well as on dynamic distributed network topologies. Now a days, due to the high demand and applicability of flying ad hoc network (FANET) which is a subclass of ad hoc network, is in trend and has a huge potential for research to its various unexplored areas. In fact while comparing FANET with distributed system, FANET has been considered as a special variant of a distributed system with high dynamic network topology. Throughout our literature study, we found no permission-based (a subclass to DME solutions) DME algorithm proposed in FANET. Hence through this paper, we present a first permission-based DME algorithm in FANET as mutual exclusion algorithm for flying network-permission based (MEAFN-PB) with efficient results in terms of its performance measures and fault-tolerant capability to node failures. We then present a case study that explores various aspects of our proposed algorithm that helps to visualize its operations. We have also analyzed the atmospheric reaction and impact of gravitational force on UAVs during the fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kshemkalyani, A. D., & Singhal, M. (2008). Distributed computing: principles, algorithms, and systems. Cambridge University Press.

    Book  Google Scholar 

  2. Gokhale, S., Dhoked, S., & Mittal, N. (2021). On group mutual exclusion for dynamic systems. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. doi:https://doi.org/10.1145/3437801.3441608

  3. Parihar, A. S., & Chakraborty, S. K. (2021). Token-based approach in distributed mutual exclusion algorithms: A Review and Direction to future research. The Journal of Supercomputing, 77, 14305–14355. https://doi.org/10.1007/s11227-021-03802-8

    Article  Google Scholar 

  4. Parihar, A. S. and Chakraborty, S. K. (2022). A new resource-sharing protocol in the light of a token-based strategy for distributed systems. International Journal of Computational Science and Engineering. In Press.

  5. Khanna, A., Rodrigues, J. J. P. C., Gupta, N., Swaroop, A., Gupta, D., Saleem, K., & de Albuquerque, V. H. C. (2019). A mutual exclusion algorithm for flying Ad Hoc networks. Computers & Electrical Engineering, 76, 82–93. https://doi.org/10.1016/j.compeleceng.2019.03.005

    Article  Google Scholar 

  6. Khanna, A., Rodrigues, J. J. P. C., Gupta, N., Swaroop, A., & Gupta, D. (2020). Local mutual exclusion algorithm using fuzzy logic for Flying Ad hoc Networks. Computer Communications, 156, 101–111. https://doi.org/10.1016/j.comcom.2020.03.036

    Article  Google Scholar 

  7. Saxena, P. C., & Rai, J. (2003). A survey of permission-based distributed mutual exclusion algorithms. Computer Standards & Interfaces, 25(2), 159–181. https://doi.org/10.1016/S0920-5489(02)00105-8

    Article  Google Scholar 

  8. Ganesh, A., Ayyasamy, S., & Kumar, N. M. S. (2021). Performance and analysis of advanced and enhanced security protocol for vehicular ad hoc networks (VANETs). Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08868-4

    Article  Google Scholar 

  9. Ramphull, D., Mungur, A., Armoogum, S., & Pudaruth, S. (2021). A review of mobile ad hoc NETwork (MANET) Protocols and their Applications. In 2021 5th international conference on intelligent computing and control systems (ICICCS). doi:https://doi.org/10.1109/iciccs51141.2021.9432258

  10. Srivastava, A., & Prakash, J. (2021). Future FANET with application and enabling techniques: Anatomization and sustainability issues. Computer Science Review. https://doi.org/10.1016/j.cosrev.2020.100359

    Article  MathSciNet  Google Scholar 

  11. Bekmezci, İ, Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270. https://doi.org/10.1016/j.adhoc.2012.12.004

    Article  Google Scholar 

  12. Jeelani, I., & Gheisari, M. (2021). Safety challenges of UAV integration in construction: Conceptual analysis and future research roadmap. Safety Science, 144, 105473. https://doi.org/10.1016/j.ssci.2021.105473

    Article  Google Scholar 

  13. Munawar, H. S., Ullah, F., Qayyum, S., & Heravi, A. (2021). Application of Deep Learning on UAV-Based Aerial Images for Flood Detection. Smart Cities, 2021(4), 1220–1242. https://doi.org/10.3390/smartcities4030065

    Article  Google Scholar 

  14. Corrigan, C. E., Roberts, G. C., Ramana, M. V., et al. (2008). Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmospheric Chemistry and Physics, 8(3), 737–747. https://doi.org/10.5194/acp-8-737-2008

    Article  Google Scholar 

  15. Cevik, P., Kocaman, I., Akgul, A. S., et al. (2013). The small and silent force multiplier: A swarm UAV electronic attack. Journal of Intelligent and Robotic Systems, 70(1–4), 595–608. https://doi.org/10.1007/s10846-012-9698-1

    Article  Google Scholar 

  16. Maza, C. F., Capitn, J., et al. (2011). Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent and Robotic Systems, 61(1–4), 563–585. https://doi.org/10.1007/s10846-010-9497-5

    Article  Google Scholar 

  17. De Freitas, E. P., Heimfarth, T., Netto, I. F., Lino, C. E., Pereira, C. E., Ferreira, A. M., Wagner, F. R., and Larsson, T. (2010). UAV relay network to support WSN connectivity. In Proc. IEEE Int. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 2010. pp. 309–314. https://doi.org/10.1109/ICUMT.2010.5676621

  18. Jiang F. & Swindlehurst A.L. (2010). Dynamic UAV relay positioning for the ground-to-air uplink. In Proceedings of the IEEE GLOBECOM Workshops (GC Workshops), IEEE, pp. 1766–1770. https://doi.org/10.1109/GLOCOMW.2010.5700245

  19. Kumar, M. J. (2021). The sky is not the limit: The new rules give wings to the Drone Technology in India. IETE Technical Review, 38(5), 463–464. https://doi.org/10.1080/02564602.2021.1983967

    Article  Google Scholar 

  20. Asadpour, M., Giustiniano, D., Hummel, K. A., & Egli, S. (2013). UAV networks in rescue missions. Proceedings of the 8th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization - WiNTECH ’13. doi: https://doi.org/10.1145/2505469.2506491

  21. Yi, W. & Qu, X. (2021). Drone-based image processing for construction site safety, transportation, and progress management. In: Qu X., Zhen L., Howlett R.J., Jain L.C. (eds) Smart Transportation Systems 2021. Smart Innovation, Systems and Technologies, 231. Springer, Singapore. https://doi.org/10.1007/978-981-16-2324-0_3

  22. Walter, J. E., Welch, J. L., & Vaidya, N. H. (2001). A mutual exclusion algorithm for ad hoc mobile networks. Wireless Networks, 7, 585–600. https://doi.org/10.1023/A:1012363200403

    Article  MATH  Google Scholar 

  23. Chen, Yu., & Welch, J. L. (2005). Self-stabilizing dynamic mutual exclusion for mobile ad hoc networks. Journal of Parallel and Distributed Computing, 65(9), 0743–7315. https://doi.org/10.1016/j.jpdc.2005.03.009

    Article  MATH  Google Scholar 

  24. Wu, W., Cao, J., & Yang, J. (2008). A fault tolerant mutual exclusion algorithm for mobile ad hoc networks. Pervasive and Mobile Computing. https://doi.org/10.1016/j.pmcj.2007.08.001

    Article  Google Scholar 

  25. Khanna, A., Singh, A. K., & Swaroop, A. (2016). A token-based solution to group local mutual exclusion problem in mobile ad hoc networks. Arabian Journal for Science and Engineering, 41, 5181–5194. https://doi.org/10.1007/s13369-016-2199-y

    Article  MathSciNet  MATH  Google Scholar 

  26. Delporte-Gallet, C., Fauconnier, H., & Raynal, M. (2021). On the weakest information on failures to solve mutual exclusion and consensus in asynchronous crash-prone read/write systems. Journal of Parallel and Distributed Computing, 153, 110–118. https://doi.org/10.1016/j.jpdc.2021.03.015

    Article  Google Scholar 

  27. Sharma B., Bhatia R.S., Singh A.K. (2011). An O(1/n) Protocol for supporting distributed mutual exclusion in vehicular ad hoc networks. In: Nagamalai D., Renault E., Dhanuskodi M. (eds) Advances in Parallel Distributed Computing. PDCTA 2011. Communications in Computer and Information Science, Volume 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24037-9_14

  28. Wu, W., Zhang, J., Luo, A., & Cao, J. (2015). Distributed mutual exclusion algorithms for intersection traffic control. IEEE Transactions on Parallel and Distributed Systems, 26(1), 65–74. https://doi.org/10.1109/TPDS.2013.2297097

    Article  Google Scholar 

  29. Lim, J., Jeong, Y. S., Park, D. S., et al. (2018). An efficient distributed mutual exclusion algorithm for intersection traffic control. The Journal of Supercomputing, 74, 1090–1107. https://doi.org/10.1007/s11227-016-1799-3

    Article  Google Scholar 

  30. Shehu, H. A., Sharif, M. H., & Ramadan, R. A. (2020). Distributed mutual exclusion algorithms for intersection traffic problems. IEEE Access, 8, 138277–138296. https://doi.org/10.1109/ACCESS.2020.3012573

    Article  Google Scholar 

  31. Parihar, A.S., Prasad, D., Gautam, A.S. and Chakraborty, S.K. (2021). Proposed end-to-end automated e-voting through blockchain technology to increase voter’s turnout. In: Prateek M., Singh T.P., Choudhury T., Pandey H.M., Gia Nhu N. (eds) Proceedings of International Conference on Machine Intelligence and Data Science Applications. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-4087-9_5

  32. Chen, Y., & Welch, J. L. (2002). Self-stabilizing mutual exclusion using tokens in mobile ad hoc networks. In Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications - DIALM ’02. doi: https://doi.org/10.1145/570810.570815

  33. Dijkstra, E. W. (1974). Self stabilization in spite of distributed control. Comm. of the ACM, 17(11), 643–644. https://doi.org/10.1145/361179.361202

    Article  MATH  Google Scholar 

  34. Baala, H., Flauzac, O., Gaber, J., Bui, M., & El-Ghazawi, T. (2003). A self-stabilizing distributed algorithm for spanning tree construction in wireless ad hoc networks. Journal of Parallel and Distributed Computing. https://doi.org/10.1016/S0743-7315(02)00028-X

    Article  MATH  Google Scholar 

  35. Zheng, W., Song, L. X., & Mei’an, L. (2007). Ad hoc distributed mutual exclusion algorithm based on token-asking. Journal of Systems Engineering and Electronics, 18(2), 398–406. https://doi.org/10.1016/S1004-4132(07)60104-2

    Article  MATH  Google Scholar 

  36. Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7), 558–565. https://doi.org/10.1145/359545.359563

    Article  MATH  Google Scholar 

  37. Singhal, M. & Manivannan, D. (1997). A distributed mutual exclusion algorithm for mobile computing environments, Proc. of ICIIS’97, IEEE Computer Society, pp. 557–561.

  38. Attiya, H., Kogan, A., & Welch, J. L. (2010). Efficient and robust local mutual exclusion in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 9(3), 361–375. https://doi.org/10.1109/TMC.2009.137

    Article  Google Scholar 

  39. Dijkstra, E. W. (1971). Hierarchical ordering of sequential processes. Acta Informatica. https://doi.org/10.1007/BF00289519

    Article  MathSciNet  Google Scholar 

  40. Tamhane, S. A., & Kumar, M. (2012). A token based distributed algorithm for supporting mutual exclusion in opportunistic networks. Pervasive and Mobile Computing. https://doi.org/10.1016/j.pmcj.2011.08.002

    Article  Google Scholar 

  41. Daymude, J. J., Richa, A. W., & Scheideler, C. (2021). Local Mutual Exclusion for Dynamic, Anonymous, Bounded Memory Message Passing Systems.

  42. Keranen, A., Ott, J., & Karkkainen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proc. 2nd international conference on simulation tools and techniques, pp. 55:1–55:10. https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674

Download references

Funding

This study was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Singh Parihar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I (Symbolic notation)

N :

Number of nodes in network

βr :

 Arrival rate of Poisson process

:

Maximum delay in between node to node communication

g :

Upper bound limit of messages generated by a node

α x :

Traversing cost of an Ad hoc from node x

β x^y :

Switch between x and y

λ :

Average time unit for message generation by a node after CS release

δ :

Broadcast message

ε :

Request message

ζ :

Request acknowledge message

η :

Permission message

θ :

Token message

ι :

Total number of CS to be invoked simultaneously in the system

T :

Propagation time of a message

Appendix II (List of abbreviations)

FANET

Flying ad hoc network

MANET

Mobile ad hoc network

VANET

Vehicular ad hoc network

UAV

Unmanned aerial vehicle

DME

Distributed mutual exclusion

DS

Distributed system

CS

Critical section

RL

Reverse link

DAG

Directed acyclic graph

AHDME

ad hoc distributed mutual exclusion

LME

local mutual exclusion

MEOP

mutual exclusion for opportunistic networks

GLME

group local mutual exclusion

MRME

Mobile resource mutual exclusion

RCLME

request collector local mutual exclusion

R-UAV

Resource-UAV

O-UAV

Ordinary-UAV

MEAFN-PB

Mutual Exclusion Algorithm for Flying Network-Permission Based

ONE

Opportunistic Network Environment

TB

Token Based

PB

Permission based

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, A.S., Chakraborty, S.K. A simple R-UAV permission-based distributed mutual exclusion in FANET. Wireless Netw 28, 779–795 (2022). https://doi.org/10.1007/s11276-022-02889-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02889-y

Keywords

Navigation