Skip to main content

Advertisement

Log in

Improved fish migration optimization with the opposition learning based on elimination principle for cluster head selection

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the wireless sensor networks (WSN), the cluster head node receives and aggregates the information collected by the sensors and forwards it to the base station (BS). Appropriate cluster head nodes help reduce the energy consumed for information transmission and prolong the network’s lifetime. The fish migration optimization (FMO) algorithm is an emerging meta-heuristic algorithm, that imitates the grayling foraging and breeding in nature. This paper proposes a modified FMO (modFMO) algorithm, which uses an opposition learning based on the elimination principle and Cauchy-based mutation to enhance the FMO algorithm. The improved modFMO is compared with some excellent algorithms on CEC 2014 function sets, and the Friedman ranks test demonstrates the effectiveness of the improvement. In this paper, the FMO algorithm and the modFMO algorithms with the centralized control algorithm are applied to select the optimal cluster head respectively. This paper takes the average energy consumption of the cluster head nodes as the objective function. Compared with other classic algorithms, the simulation results demonstrate that the modFMO algorithm can extend the lifetime of wireless networks, reduce energy consumption, improve information transmission efficiency and improved the ability of FMO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This data used to support the findings of this study are included within the article.

References

  1. Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). Coca: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256–268. https://doi.org/10.1016/j.comcom.2012.10.006

    Article  Google Scholar 

  2. Mann, P. S., & Singh, S. (2018). Optimal node clustering and scheduling in wireless sensor networks. Wireless Personal Communications, 100(3), 683–708.

    Article  Google Scholar 

  3. Heinzelman, W.R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (pp. 10-19). https://doi.org/10.1109/HICSS.2000.926982

  4. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. https://doi.org/10.1109/TWC.2002.804190

    Article  Google Scholar 

  5. Lindsey, S., & Raghavendra, C.S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings, IEEE aerospace conference (pp. 3-9)

  6. Loscri, V., Morabito, G., Marano, S. (2005). A two-levels hierarchy for low-energy adaptive clustering hierarchy (TL-LEACH). In IEEE vehicular technology conference (pp. 1809-1815)

  7. Xiangning, F., & Yulin, S. (2007). Improvement on LEACH protocol of wireless sensor network. In 2007 international conference on sensor technologies and applications (SENSORCOMM 2007) (pp.260-264). https://doi.org/10.1109/SENSORCOMM.2007.4394931

  8. Ran, G., Zhang, H., & Gong, S. (2010). Improving on LEACH protocol of wireless sensor networks using fuzzy logic. Journal of Information & Computational Science, 7(3), 767–775.

    Google Scholar 

  9. Luenberger, D. G., & Ye, Y. (1984). Linear and nonlinear programming. Berlin: Springer.

    MATH  Google Scholar 

  10. Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117. https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  11. Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion Wesley, 1989(102), 36.

    Google Scholar 

  12. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. USA: MIT press.

    Book  Google Scholar 

  13. Chang, J. F., Roddick, J. F., Pan, J. S., & Chu, S. C. (2005). A parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 21(4), 809–818.

    Google Scholar 

  14. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43).

  15. Chu, S.C., Tsai, P.W., & Pan, J.S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858.)

  16. Kong, L., Pan, J. S., Tsai, P. W., Vaclav, S., & Ho, J. H. (2015). A balanced power consumption algorithm based on enhanced parallel cat swarm optimization for wireless sensor network. International Journal of Distributed Sensor Networks, 11(3), 729680. https://doi.org/10.1155/2015/729680.

    Article  Google Scholar 

  17. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  18. Hu, P., Pan, J. S., & Chu, S. C. (2020). Improved binary grey wolf optimizer and its application for feature selection. Knowledge-Based Systems, 195, 105746. https://doi.org/10.1016/j.knosys.2020.105746.

    Article  Google Scholar 

  19. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  20. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  21. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028.

    Article  Google Scholar 

  22. Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2020). Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11, 1501–1529. https://doi.org/10.1007/s13042-019-01053-x.

    Article  Google Scholar 

  23. Tillett, J., Rao, R., & Sahin, F. (2002). Cluster-head identification in ad hoc sensor networks using particle swarm optimization. In 2002 IEEE International Conference on Personal WirelessCommunications (pp. 201-205). https://doi.org/10.1109/ICPWC.2002.1177277

  24. Guru, S., Halgamuge, S., & Fernando, S. (2005). Particle swarm optimisers for cluster formation in wireless sensor networks. In 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (pp. 319-324). https://doi.org/10.1109/ISSNIP.2005.1595599

  25. Latiff, N.A., Tsimenidis, C.C., & Sharif, B.S. (2007). Energy-aware clustering for wireless sensor networks using particle swarm optimization. In 2007 IEEE 18th international symposium on personal, indoor and mobile radio communications (pp. 1-5). https://doi.org/10.1109/PIMRC.2007.4394521

  26. Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks, 23(7), 2005–2020. https://doi.org/10.1007/s11276-016-1270-7

    Article  Google Scholar 

  27. Chandirasekaran, D., & Jayabarathi, T. (2019). Cat swarm algorithm in wireless sensor networks for optimized cluster head selection: A real time approach. Cluster Computing, 22(5), 11351–11361. https://doi.org/10.1007/s10586-017-1392-4.

    Article  Google Scholar 

  28. Janakiraman, S. (2018). A hybrid ant colony and artificial bee colony optimization algorithm-based cluster head selection for IoT. Procedia Computer Science, 143, 360–366. https://doi.org/10.1016/j.procs.2018.10.407

    Article  Google Scholar 

  29. John, J., & Rodrigues, P. (2019). MOTCO: Multi-objective taylor crow optimization algorithm for cluster head selection in energy aware wireless sensor network. Mobile Networks and Applications, 24(5), 1509–1525. https://doi.org/10.1007/s11036-019-01271-1

    Article  Google Scholar 

  30. Pal, V., Singh, G., Yadav, R., et al. (2015). Cluster head selection optimization based on genetic algorithm to prolong lifetime of wireless sensor networks. Procedia Computer Science, 57, 1417–1423. https://doi.org/10.1016/j.procs.2015.07.461

    Article  Google Scholar 

  31. Pitchaimanickam, B., & Murugaboopathi, G. (2020). A hybrid firefly algorithm with particle swarm optimization for energy efficient optimal cluster head selection in wireless sensor networks. Neural Computing and Applications, 32(12), 7709–7723. https://doi.org/10.1007/s00521-019-04441-0

    Article  Google Scholar 

  32. Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Cluster Computing, 22(1), 1361–1372. https://doi.org/10.1007/s10586-017-1628-3

    Article  Google Scholar 

  33. Sengottuvelan, P., & Prasath, N. (2017). BAFSA: Breeding artificial fish swarm algorithm for optimal cluster head selection in wireless sensor networks. Wireless Personal Communications, 94(4), 1979–1991. https://doi.org/10.1007/s11277-016-3340-7

    Article  Google Scholar 

  34. Alghamdi, T. A. (2020). Energy efficient protocol in wireless sensor network: Optimized cluster head selection model. Telecommunication Systems, 3(74), 331–345.

    Article  Google Scholar 

  35. Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2013). Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In Computational Intelligence Laboratory: Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University.

  36. Pan, J.S., Tsai, P.W., & Liao, Y.B. (2010). Fish migration optimization based on the fishy biology. In 2010 Fourth International Conference on Genetic and Evolutionary Computing (pp. 783-786).

  37. Pan, J. S., Hu, P., & Chu, S. C. (2021). Binary fish migration optimization for solving unit commitment. Energy, 226, 120329–120334. https://doi.org/10.1016/j.energy.2021.120329

    Article  Google Scholar 

  38. Guo, B., Zhuang, Z., Pan, J. S., & Chu, S. C. (2021). Optimal design and simulation for pid controller using fractional-order fish migration optimization algorithm. IEEE Access, 9, 8808–8819. https://doi.org/10.1109/ACCESS.2021.3049421

    Article  Google Scholar 

  39. Paiva, F.A., Silva, C.R., Leite, I.V., Marcone, M.H., & Costa, J.A. (2017). Modified bat algorithm with cauchy mutation and elite opposition-based learning. In 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (pp. 1-6). https://doi.org/10.1109/LA-CCI.2017.8285715

  40. Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2008). Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, 12(1), 64–79. https://doi.org/10.1109/TEVC.2007.894200

    Article  Google Scholar 

  41. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  42. Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606–611.

    Article  Google Scholar 

Download references

Funding

No funding support in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chuan Chu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XW., Pan, JS., Mohamed, A.W. et al. Improved fish migration optimization with the opposition learning based on elimination principle for cluster head selection. Wireless Netw 28, 1017–1038 (2022). https://doi.org/10.1007/s11276-022-02892-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02892-3

Keywords

Navigation