Skip to main content
Log in

Localization and image of metro vehicle bogie frame using guided waves

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The health status of bogie directly affects the running quality and safety of metro vehicle. In view of the deficiencies of the existing inspection methods, this paper presents a baseline-free Structural Health Monitoring and management method to address the detection, localization and visualization of cracks in bogie frame using Guided Waves. First, we conduct a finite element simulation of steel bogie frame to determine the center excitation frequency. It helps to settle the mode that sensitive to cracks. And once the crack is detected, we use a wavelet method—Split Spectrum Processing to calculate the Time of Flight. It is more accurate for localization, compared with the traditional method based on Hilbert envelope. Finally, this paper proposes a direct time reversal imaging algorithm, which combine incident Guided Waves signals and reconstructed time-reversed counterparts. The result of practical experiment confirmed that this method could be used for detecting, locating and visualizing cracks in metro vehicle bogie frame accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Su, Z., Ye, L., & Lu, Y. (2006). Guided Lamb waves for identification of damage in composite structures: A review. Journal of Sound & Vibration, 295(3), 753–780.

    Article  Google Scholar 

  2. Kudela, P., Radzienski, M., Ostachowicz, W., et al. (2018). Structural health monitoring system based on a concept of lamb wave focusing by the piezoelectric array. Mechanical Systems & Signal Processing, 108, 21–32.

    Article  Google Scholar 

  3. Worlton, D. C. (1961). Experimental confirmation of lamb waves at megacycle frequencies. Journal of Applied Physics, 32(6), 967–971.

    Article  Google Scholar 

  4. Redwood, M. (1967). Rayleigh and lamb waves. New York: Plenum Press.

    Google Scholar 

  5. Rose, L. R. F., Chan, E., & Wang, C. H. (2015). A comparison and extensions of algorithms for quantitative imaging of laminar damage in plates. I. Point spread functions and near field imaging. Wave Motion, 58(3), 222–243.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, H., Zhao, B., & Deng, Y. (2018). Instability phenomenon associated with two typical high speed railway vehicles. International Journal of Non-linear Mechanics, 105, 130–145.

    Article  Google Scholar 

  7. Sun, R., Wang, J., Cheng, Q., et al. (2021). A new IMU-aided multiple GNSS fault detection and exclusion algorithm for integrated navigation in urban environments. GPS Solutions. https://doi.org/10.1007/s10291-021-01181-4

    Article  Google Scholar 

  8. Ding, L., Huang, L., Li, S., et al. (2020). Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain. IEEE Transactions on Robotics, 36(3), 894–909.

    Article  Google Scholar 

  9. Zhou, W., Liu, J., Lei, J., et al. (2021). GMNet: Graded-feature multilabel-learning network for RGB-Thermal urban scene semantic segmentation. IEEE Transactions on Image Processing, 30, 7790–7802.

    Article  Google Scholar 

  10. Yuan, S. F. (2007). Structural health monitoring. National Defense Industry Press.

    Google Scholar 

  11. Furuya, M., Suzuki, T., Maeda, J., et al. (2017). Midlatitude sporadic-E episodes viewed by L-band split-spectrum InSAR. Earth, Planets and Space, 69, 175.

    Article  Google Scholar 

  12. Pedram, S. K., Fateri, S., Gan, L., et al. (2018). Split-spectrum processing technique for snr enhancement of ultrasonic guided wave. Ultrasonics, 83, 48.

    Article  Google Scholar 

  13. Karpur, P., Shankar, P. M., Rose, J. L., et al. (1987). Split spectrum processing: Optimizing the processing parameters using minimization. Ultrasonics, 25(4), 204–208.

    Article  Google Scholar 

  14. Newhouse, V. L., Bilgutay, N. M., Saniie, J., et al. (1982). Flaw-to-grain echo enhancement by split-spectrum processing. Ultrasonics, 20(2), 59–68.

    Article  Google Scholar 

  15. Shankar, P. M., Karpur, P., Newhouse, V. L., et al. (1989). Split-spectrum processing: Analysis of polarity threshold algorithm for improvement of signal-to-noise ratio and detectability in ultrasonic signals. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 36(1), 101–108.

    Article  Google Scholar 

  16. Miao, X. T., Li, F. C., & Meng, G. (2012). Ultrasonic guided wave-based damage identification with split spectrum processing algorithm. Journal of Vibration and Shock, 31(1), 5–10.

    Google Scholar 

  17. Li, F., Su, Z., Lin, Y., et al. (2006). A correlation filtering-based matching pursuit (CF-MP) for damage identification using Lamb waves. Smart Materials & Structures, 15(6), 1585.

    Article  Google Scholar 

  18. Harri, K., Guillaume, P., & Vanlanduit, S. (2008). On-line damage detection on a wing panel using transmission of multisine ultrasonic waves. Ndt & E International, 41(4), 312–317.

    Article  Google Scholar 

  19. Gorgin, R., Wu, Z., Gao, D., et al. (2014). Damage size characterization algorithm for active structural health monitoring using the A0 mode of Lamb waves. Smart Materials & Structures, 23(3), 35015.

    Article  Google Scholar 

  20. Wang, G. F., Li, F. C., Liu, Z. Q., et al. (2017). Application of ultrasonic guided waves in damage localization of circular tube structures. Vibration Testing and Diagnosis, 37(3), 440–448.

    Google Scholar 

  21. Ye, L., Lin, Y., & Su, Z. (2006). Crack identification in aluminium plates using Lamb wave signals of a PZT sensor network. Smart Materials & Structures, 15(3), 839.

    Article  Google Scholar 

  22. Ye, L., Lin, Y., Dong, W., et al. (2010). Conjunctive and compromised data fusion schemes for identification of multiple notches in an aluminium plate using Lamb wave signals. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 57(9), 2005–2016.

    Article  Google Scholar 

  23. Murat, B. I. S., Khalili, P., Fromme, P. (2014) Guided ultrasonic waves for impact damage detection in composite panels. Proc. SPIE 9064, Health Monitoring of Structural and Biological Systems, 906419.

  24. Moll, J., Schulte, R. T., Hartmann, B., et al. (2010). Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system. Smart Materials & Structures, 19(4), 45022.

    Article  Google Scholar 

  25. Zhou, W., Yu, L., Zhou, Y., et al. (2018). Local and global feature learning for blind quality evaluation of screen content and natural scene images. IEEE Transactions on Image Processing, 27(5), 2086–2095.

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, J., Cong, Y., Sun, G., Fang, Z., & Ding, Z. (2021). Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3128560

    Article  Google Scholar 

  27. Zhou, Y., Xu, G., Tang, K., et al. (2022). Video coding optimization in AVS2. Information Processing & Management, 59(2), 102808.

    Article  Google Scholar 

  28. Lu, N., Wang, H., Wang, K., et al. (2021). Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges. Cmes-Computer Modeling in Engineering & Sciences, 127(1), 345–360.

    Article  MathSciNet  Google Scholar 

  29. Luo, Y., Zheng, H., Zhang, H., & Liu, Y. (2021). Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation. Advances in Structural Engineering, 24, 3021–3029.

    Article  Google Scholar 

  30. Jiang, Y., Li, X. (2021) Broadband cancellation method in an adaptive co-site interference cancellation system. International Journal of Electronics.

  31. Xiao, G., Chen, B., Li, S., et al. (2022). Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress. Engineering Failure Analysis, 131, 105846.

    Article  Google Scholar 

  32. Cuc, A., Giurgiutiu, V., Joshi, S., et al. (2012). Structural health monitoring with piezoelectric wafer active sensors for space applications. Aiaa Journal, 45(12), 2838–2850.

    Article  Google Scholar 

  33. Chan, E., Rose, L. R. F., & Wang, C. H. (2016). A comparison and extensions of algorithms for quantitative imaging of laminar damage in plates. II. Non-monopole scattering and noise tolerance. Wave Motion, 66, 220–237.

    Article  MathSciNet  MATH  Google Scholar 

  34. An, Y. K., Park, B., & Sohn, H. (2013). Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Materials & Structures, 22(22), 25022.

    Article  Google Scholar 

  35. Mustapha, S., Lu, Y., Li, J., et al. (2014). Damage detection in rebar-reinforced concrete beams based on time reversal of guided wave. Structural Health Monitoring, 13(4), 347–358.

    Article  Google Scholar 

  36. Wang, Y. S., Gao, T., Liu, D. B., et al. (2020). Propagation characteristics of ultrasonic weld-guided waves in Friction stir welding joint of same material. Ultrasonics, 102(3), 106058.

    Article  Google Scholar 

  37. Hu, Ch., Yang, B., Xiao, B., et al. (2022). Damage localization in pressure vessel using guided wave-based techniques: Optimizing the sensor array configuration to mitigate nozzle effects. Applied Acoustics, 185(1), 108393.

    Article  Google Scholar 

  38. Shi, Y. P., & Zhou, Y. R. (2006). A case study of ABAQUS finite element analysis. China Machine Press.

    Google Scholar 

  39. Raffaella, D. S. (2015). Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors, 15(8), 18666–18713.

    Article  Google Scholar 

  40. Pavlopoulou, S., Soutis, C., & Manson, G. (2013). Non-destructive inspection of adhesively bonded patch repairs using lamb waves. Plastics Rubber & Composites, 41(2), 61–68.

    Article  Google Scholar 

  41. Guo, S., Pei, Q., & Ramp, T. (2017). Application of short-time fourier transform to high-rise frame structural-health monitoring based on change of inherent frequency over time. Journal of Chongqing University, 16(1), 1–10.

    Google Scholar 

  42. Loewke, K., Meyer, D., Starr, A., et al. (2005). Structural health monitoring using FFT. Proc. SPIE 5765, Smart Structures and Materials: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems.

  43. Rodriguez, A., Miralles, R., Bosch, I., et al. (2012). New analysis and extensions of split-spectrum processing algorithms. Ndt & E International, 45(1), 141–147.

    Article  Google Scholar 

  44. Bouden, T., Djerfi, F., & Nibouche, M. (2015). Adaptive split spectrum processing for ultrasonic signal in the pulse echo test. Russian Journal of Nondestructive Testing, 51(4), 245–257.

    Article  Google Scholar 

  45. Lv, W., Zhou, S., & Cui, A. (2013). Research on the Nondestructive detection of ultrasonic guided wave based on the time-reversal method. Applied Mechanics & Materials, 330, 996–1002.

    Article  Google Scholar 

  46. Sai, Y. Z., Jiang, M. S., Sui, Q. M., et al. (2014). Acoustic emission positioning technology based on FBG sensor network and time-reversal focusing imaging method. China Laser, 41(8), 133–138.

    Google Scholar 

  47. Liu, Z. H., Wei, R., Li, Z. M., et al. (2015). Detection of structural defects of beams by horizontal shear guided waves based on time-reversal method. Nondestructive Testing, 37(4), 28–32.

    Google Scholar 

  48. Sun, R., Chen, G., He, H., et al. (2014). The impact force identification of composite stiffened panels under material uncertainty. Finite Elements in Analysis & Design, 81(2), 38–47.

    Article  Google Scholar 

  49. Wang, Y. S., & Qing, X. L. (2016). Progress on study of structural health monitoring technology for composite joints. Acta Materiae Compositae Sinica, 33(1), 1–16.

    Google Scholar 

  50. Yu, L., & Giurgiutiu, V. (2012). Piezoelectric wafer active sensors in Lamb wave-based structural health monitoring. JOM Journal of the Minerals Metals and Materials Society, 64, 814–822.

    Article  Google Scholar 

  51. Cho, Y. (2012). Model-based guided wave NDE: The evolution of guided wave NDE from “magic” to “physically based engineering tool.” Journal of Nondestructive Evaluation, 31(4), 324–338.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (L201020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Zhang, Y., Liang, K. et al. Localization and image of metro vehicle bogie frame using guided waves. Wireless Netw 28, 2323–2335 (2022). https://doi.org/10.1007/s11276-022-02906-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02906-0

Keywords

Navigation