Skip to main content
Log in

Physical layer authentication in MIMO systems: a carrier frequency offset approach

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

By exploiting the carrier frequency offset (CFO) between a transmitter-receiver pair, this paper proposes a CFO-based physical layer authentication scheme for dynamic multiple-input-multiple-output (MIMO) systems. We first provide analytical modeling of dynamic CFO in such MIMO systems by jointly taking into account the intrinsic oscillator mismatch and Doppler frequency shift caused by node mobility, and employ the self-correlating and extended Kalman filtering techniques for the CFO estimation and prediction. By quantizing the difference between the estimated CFO and predicted one, we then apply the statistical signal processing techniques to develop a CFO-based physical layer authentication scheme for transmitter identity verification. With the help of tools from stochastic process and hypothesis testing theories, we further derive the analytical expressions for false alarm rate as well as detection rate to evaluate the performance of the proposed scheme. Finally, we provide extensive numerical results to demonstrate the efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

Data analyzed in this study are included within this article.

References

  1. Baracca, P., Laurenti, N., & Tomasin, S. (2012). Physical layer authentication over MIMO fading wiretap channels. IEEE Transactions on Wireless Communications, 11(7), 2564–2573. https://doi.org/10.1109/TWC.2012.051512.111481.

    Article  Google Scholar 

  2. Björnson, E., Hoydis, J., Kountouris, M., & Debbah, M. (2014). Massive MIMO systems with non-ideal hardware: Energy efficiency. IEEE Transactions on Information Theory, 60(11), 7112–7139. https://doi.org/10.1109/TIT.2014.2354403.

    Article  MathSciNet  MATH  Google Scholar 

  3. Björnson, E., & Sanguinetti, L. (2020). Scalable cell-free massive MIMO systems. IEEE Transactions on Communications, 68(7), 4247–4261. https://doi.org/10.1109/TCOMM.2020.2987311.

    Article  Google Scholar 

  4. Brik, V., Banerjee, S., Gruteser, M., & Oh, S. (2008). Wireless device identification with radiometric signatures. In: Garcia-Luna-Aceves JJ, Sivakumar R, Steenkiste P (eds) Proceedings of the 14th annual international conference on mobile computing and networking, MOBICOM 2008, San Francisco, California, USA, September 14-19, 2008, ACM, pp. 116–127. https://doi.org/10.1145/1409944.1409959

  5. Chen, D., Zhang, N., Lu, R., Fang, X., & Shen, X. S. (2018). An LDPC code based physical layer message authentication scheme with prefect security. IEEE Journal on Selected Areas in Communications, 36(4), 748–761. https://doi.org/10.1109/JSAC.2018.2825079.

    Article  Google Scholar 

  6. Feng, W., Wang, J., Chen, Y., Wang, X., Ge, N., & Lu, J. (2019). Uav-aided MIMO communications for 5G internet of things. IEEE Internet of Things Journal, 6(2), 1731–1740. https://doi.org/10.1109/JIOT.2018.2874531.

    Article  Google Scholar 

  7. Forney, G. D. (1972). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory, 18(3), 363–378. https://doi.org/10.1109/TIT.1972.1054829.

    Article  MathSciNet  MATH  Google Scholar 

  8. Goergen, N., Lin, W. S., Liu, K. J. R., & Clancy, T. C. (2011). Extrinsic channel-like fingerprint embedding for authenticating MIMO systems. IEEE Transactions on Wireless Communications, 10(12), 4270–4281. https://doi.org/10.1109/TWC.2011.101211.110045.

    Article  Google Scholar 

  9. Hao, P., Wang, X., & Behnad, A. (2014). Relay authentication by exploiting I/Q imbalance in amplify-and-forward system. In: IEEE global communications conference, GLOBECOM 2014, Austin, TX, USA, December 8-12, 2014, IEEE, pp. 613–618. https://doi.org/10.1109/GLOCOM.2014.7036875

  10. Hou, W., Wang, X., & Chouinard, J. (2012). Physical layer authentication in OFDM systems based on hypothesis testing of CFO estimates. In: proceedings of IEEE international conference on communications, ICC 2012, Ottawa, ON, Canada, June 10-15, 2012, IEEE, pp. 3559–3563. https://doi.org/10.1109/ICC.2012.6364429

  11. Hou, W., Wang, X., Chouinard, J., & Refaey, A. (2014). Physical layer authentication for mobile systems with time-varying carrier frequency offsets. IEEE Transactions on Communications, 62(5), 1658–1667. https://doi.org/10.1109/TCOMM.2014.032914.120921.

    Article  Google Scholar 

  12. Jr, W. C. J. (1974). Microwave Mobile Communications. Wiley/IEEE Press. https://doi.org/10.1109/9780470545287.

  13. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552.

    Article  MathSciNet  Google Scholar 

  14. Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1), 95–108. https://doi.org/10.1115/1.3658902.

    Article  MathSciNet  Google Scholar 

  15. Kay, S., & Hall, P. (1998). Fundamentals of statistical signal processing, volume II: Detection theory. Technometrics. https://doi.org/10.1080/00401706.1995.10484391.

    Article  Google Scholar 

  16. Kim, H., & El Gamal, A. (2016). Capacity theorems for broadcast channels with two channel state components known at the receivers. IEEE Transactions on Information Theory, 62(12), 6917–6930. https://doi.org/10.1109/TIT.2016.2620159.

    Article  MathSciNet  MATH  Google Scholar 

  17. Latif, S. A., Wen, F. B. X., Iwendi, C., Wang, L. F., Mohsin, S. M., Han, Z., & Band, S. S. (2022). AI-empowered, blockchain and SDN integrated security architecture for IoT network of cyber physical systems. Computer Communications, 181, 274–283. https://doi.org/10.1016/j.comcom.2021.09.029.

    Article  Google Scholar 

  18. Lin, D. D., Pacheco, R. A., Lim, T. J., & Hatzinakos, D. (2006). Joint estimation of channel response, frequency offset, and phase noise in OFDM. IEEE Transactions on Signal Processing, 54(9), 3542–3554. https://doi.org/10.1109/TSP.2006.879265.

    Article  MATH  Google Scholar 

  19. Liu, FJ., Wang, X., & Tang, H. (2011). Robust physical layer authentication using inherent properties of channel impulse response. In: MILCOM, 2011-2011 IEEE Military Communications Conference,Baltimore, MD, USA, November 7-10, 2011, IEEE, pp 538–542. https://doi.org/10.1109/MILCOM.2011.6127727

  20. Liu, F. J., & Wang, X. (2016). Physical layer authentication enhancement using two-dimensional channel quantization. IEEE Transactions on Wireless Communications, 15(6), 4171–4182. https://doi.org/10.1109/TWC.2016.2535442.

    Article  Google Scholar 

  21. Mehrpouyan, H., Nasir, A. A., Blostein, S. D., Eriksson, T., Karagiannidis, G. K., & Svensson, T. (2012). Joint estimation of channel and oscillator phase noise in MIMO systems. IEEE Transactions on Signal Processing, 60(9), 4790–4807. https://doi.org/10.1109/TSP.2012.2202652.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohseni, S. (2013). Study the carrier frequency offset (cfo) for wireless ofdm. https://digitalcommons.du.edu/etd/438

  23. Nadeem, Q., Kammoun, A., Debbah, M., & Alouini, M. (2018). Design of 5G full dimension massive MIMO systems. IEEE Transactions on Communications, 66(2), 726–740. https://doi.org/10.1109/TCOMM.2017.2762685.

    Article  Google Scholar 

  24. Olwal, T. O., Djouani, K., & Kurien, A. M. (2016). A survey of resource management toward 5G radio access networks. IEEE Communications Surveys and Tutorials, 18(3), 1656–1686. https://doi.org/10.1109/COMST.2016.2550765.

    Article  Google Scholar 

  25. Pitarokoilis, A., Mohammed, S. K., & Larsson, E. G. (2015). Uplink performance of time-reversal MRC in massive MIMO systems subject to phase noise. IEEE Transactions on Wireless Communications, 14(2), 711–723. https://doi.org/10.1109/TWC.2014.2359018.

    Article  Google Scholar 

  26. Polak, A. C., Dolatshahi, S., & Goeckel, D. (2011). Identifying wireless users via transmitter imperfections. IEEE Journal on Selected Areas in Communications, 29(7), 1469–1479. https://doi.org/10.1109/JSAC.2011.110812.

    Article  Google Scholar 

  27. Polak, A. C., & Goeckel, D. L. (2015). Identification of wireless devices of users who actively fake their RF fingerprints with artificial data distortion. IEEE Transactions on Wireless Communications, 14(11), 5889–5899. https://doi.org/10.1109/TWC.2015.2443794.

    Article  Google Scholar 

  28. Salim, O. H., Nasir, A. A., Mehrpouyan, H., Xiang, W., Durrani, S., & Kennedy, R. A. (2014). Channel, phase noise, and frequency offset in OFDM systems: Joint estimation, data detection, and hybrid cramér-rao lower bound. IEEE Transactions on Communications, 62(9), 3311–3325. https://doi.org/10.1109/TCOMM.2014.2345056.

    Article  Google Scholar 

  29. Shamshirband, S., Shamshirband, M., Chronopoulos, A. T., Montieri, A., Palumbo, F., & Pescapè, A. (2020). Computational intelligence intrusion detection techniques in mobile cloud computing environments: Review, taxonomy, and open research issues. Journal of Information Security and Applications, 55, 102582. https://doi.org/10.1016/j.jisa.2020.102582.

    Article  Google Scholar 

  30. Shan, D., Zeng, K., Xiang, W., Richardson, P. C., & Dong, Y. (2013). PHY-CRAM: Physical layer challenge-response authentication mechanism for wireless networks. IEEE Journal on Selected Areas in Communications, 31(9), 1817–1827. https://doi.org/10.1109/JSAC.2013.130914.

    Article  Google Scholar 

  31. Shi, Y., & Jensen, M. A. (2011). Improved radiometric identification of wireless devices using MIMO transmission. IEEE Transactions on Information Forensics and Security, 6(4), 1346–1354. https://doi.org/10.1109/TIFS.2011.2162949.

    Article  Google Scholar 

  32. Sonkoly, B., Szabó, R., Németh, B., Czentye, J., Haja, D., Szalay, M., et al. (2020). 5G applications from vision to reality: Multi-operator orchestration. IEEE Journal on Selected Areas in Communications, 38(7), 1401–1416. https://doi.org/10.1109/JSAC.2020.2999684.

    Article  Google Scholar 

  33. Tichavsky, P., & Muravchik, C. H. (1998). Posterior cramer-rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 46(5), 1386–1396. https://doi.org/10.1109/78.668800.

    Article  Google Scholar 

  34. Trees, HLV., Bell, KL. (2013). Detection estimation and modulation theory, part I: Detection, estimation, and filtering theory, 2nd Edition. A Papoulis Probability Random Variables & Stochastic Processes, 8(10), 293–303.

  35. Wan, X., Xiao, L., Li, Q., & Han, Z. (2017). PHY-layer authentication with multiple landmarks with reduced communication overhead. In: 2017 IEEE international conference on communications (ICC), pp. 1–6. https://doi.org/10.1109/ICC.2017.7997250

  36. Wang, X., Hao, P., & Hanzo, L. (2016). Physical-layer authentication for wireless security enhancement: Current challenges and future developments. IEEE Communications Magazine, 54(6), 152–158. https://doi.org/10.1109/MCOM.2016.7498103.

    Article  Google Scholar 

  37. Wang, W., Sun, Z., Piao, S., Zhu, B., & Ren, K. (2016). Wireless physical-layer identification: Modeling and validation. IEEE Transactions on Information Forensics and Security, 11(9), 2091–2106. https://doi.org/10.1109/TIFS.2016.2552146.

    Article  Google Scholar 

  38. Wang, C., Wang, H. M., & Xia, X. G. (2015). Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks. IEEE Transactions on Wireless Communications, 14(2), 589–605. https://doi.org/10.1109/TWC.2014.2354635.

    Article  Google Scholar 

  39. Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K., & Gao, X. (2018). A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 36(4), 679–695. https://doi.org/10.1109/JSAC.2018.2825560.

    Article  Google Scholar 

  40. Xiao, L., Greenstein, L. J., Mandayam, N. B., & Trappe, W. (2008). Using the physical layer for wireless authentication in time-variant channels. IEEE Transactions on Wireless Communications, 7(7), 2571–2579. https://doi.org/10.1109/TWC.2008.070194.

    Article  Google Scholar 

  41. Xiao, L., Greenstein, L. J., Mandayam, N. B., & Trappe, W. (2009). Channel-based spoofing detection in frequency-selective Rayleigh channels. IEEE Transactions on Wireless Communications, 8(12), 5948–5956. https://doi.org/10.1109/TWC.2009.12.081544.

    Article  Google Scholar 

  42. Xiao, L., Sheng, G., Wan, X., Su, W., & Cheng, P. (2019). Learning-based PHY-layer authentication for underwater sensor networks. IEEE Communications Letters, 23(1), 60–63. https://doi.org/10.1109/LCOMM.2018.2877317.

    Article  Google Scholar 

  43. Xiao, L., Wan, X. Y., & Han, Z. (2018). PHY-layer authentication with multiple landmarks with reduced overhead. IEEE Transactions on Wireless Communications, 17(3), 1676–1687. https://doi.org/10.1109/TWC.2017.2784431.

    Article  Google Scholar 

  44. Yu, P. L., Baras, J. S., & Sadler, B. M. (2008). Physical-layer authentication. IEEE Transactions on Information Forensics and Security, 3(1), 38–51. https://doi.org/10.1109/TIFS.2007.916273.

    Article  Google Scholar 

  45. Zhang, P., Liu, J., Shen, Y., & Jiang, X. (2020). Exploiting channel gain and phase noise for PHY-layer authentication in massive MIMO systems. IEEE Transactions on Information Forensics and Security, 16, 4265–4279. https://doi.org/10.1109/TIFS.2020.3029894.

    Article  Google Scholar 

  46. Zhang, P., Liu, J., Shen, Y., Li, H., & Jiang, X. (2020). Lightweight tag-based PHY-layer authentication for IoT devices in smart cities. IEEE Internet Things Journal, 7(5), 3977–3990. https://doi.org/10.1109/JIOT.2019.2958079.

    Article  Google Scholar 

  47. Zhang, P., Shen, Y., Jiang, X., & Wu, B. (2020). Physical layer authentication jointly utilizing channel and phase noise in MIMO systems. IEEE Transactions on Communications, 68(4), 2446–2458. https://doi.org/10.1109/TCOMM.2020.2967393.

    Article  Google Scholar 

  48. Zhao, C., Huang, M., Huang, L., Du, X., & Guizani, M. (2017). A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. Computer Networks, 128, 164–171. https://doi.org/10.1016/j.comnet.2017.05.028.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Key R&D Program of China (Grant No. 2018-YFE0207600), the Natural Science Foundation of China (NSFC) under Grant 61972308, and the Natural Science Foundation of Anhui Province in China under Grant 2008085QF324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, P., Liu, J. et al. Physical layer authentication in MIMO systems: a carrier frequency offset approach. Wireless Netw 28, 1909–1921 (2022). https://doi.org/10.1007/s11276-022-02916-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02916-y

Keywords

Navigation