Abstract
By exploiting the carrier frequency offset (CFO) between a transmitter-receiver pair, this paper proposes a CFO-based physical layer authentication scheme for dynamic multiple-input-multiple-output (MIMO) systems. We first provide analytical modeling of dynamic CFO in such MIMO systems by jointly taking into account the intrinsic oscillator mismatch and Doppler frequency shift caused by node mobility, and employ the self-correlating and extended Kalman filtering techniques for the CFO estimation and prediction. By quantizing the difference between the estimated CFO and predicted one, we then apply the statistical signal processing techniques to develop a CFO-based physical layer authentication scheme for transmitter identity verification. With the help of tools from stochastic process and hypothesis testing theories, we further derive the analytical expressions for false alarm rate as well as detection rate to evaluate the performance of the proposed scheme. Finally, we provide extensive numerical results to demonstrate the efficiency of the proposed scheme.







Similar content being viewed by others
Data availibility
Data analyzed in this study are included within this article.
References
Baracca, P., Laurenti, N., & Tomasin, S. (2012). Physical layer authentication over MIMO fading wiretap channels. IEEE Transactions on Wireless Communications, 11(7), 2564–2573. https://doi.org/10.1109/TWC.2012.051512.111481.
Björnson, E., Hoydis, J., Kountouris, M., & Debbah, M. (2014). Massive MIMO systems with non-ideal hardware: Energy efficiency. IEEE Transactions on Information Theory, 60(11), 7112–7139. https://doi.org/10.1109/TIT.2014.2354403.
Björnson, E., & Sanguinetti, L. (2020). Scalable cell-free massive MIMO systems. IEEE Transactions on Communications, 68(7), 4247–4261. https://doi.org/10.1109/TCOMM.2020.2987311.
Brik, V., Banerjee, S., Gruteser, M., & Oh, S. (2008). Wireless device identification with radiometric signatures. In: Garcia-Luna-Aceves JJ, Sivakumar R, Steenkiste P (eds) Proceedings of the 14th annual international conference on mobile computing and networking, MOBICOM 2008, San Francisco, California, USA, September 14-19, 2008, ACM, pp. 116–127. https://doi.org/10.1145/1409944.1409959
Chen, D., Zhang, N., Lu, R., Fang, X., & Shen, X. S. (2018). An LDPC code based physical layer message authentication scheme with prefect security. IEEE Journal on Selected Areas in Communications, 36(4), 748–761. https://doi.org/10.1109/JSAC.2018.2825079.
Feng, W., Wang, J., Chen, Y., Wang, X., Ge, N., & Lu, J. (2019). Uav-aided MIMO communications for 5G internet of things. IEEE Internet of Things Journal, 6(2), 1731–1740. https://doi.org/10.1109/JIOT.2018.2874531.
Forney, G. D. (1972). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory, 18(3), 363–378. https://doi.org/10.1109/TIT.1972.1054829.
Goergen, N., Lin, W. S., Liu, K. J. R., & Clancy, T. C. (2011). Extrinsic channel-like fingerprint embedding for authenticating MIMO systems. IEEE Transactions on Wireless Communications, 10(12), 4270–4281. https://doi.org/10.1109/TWC.2011.101211.110045.
Hao, P., Wang, X., & Behnad, A. (2014). Relay authentication by exploiting I/Q imbalance in amplify-and-forward system. In: IEEE global communications conference, GLOBECOM 2014, Austin, TX, USA, December 8-12, 2014, IEEE, pp. 613–618. https://doi.org/10.1109/GLOCOM.2014.7036875
Hou, W., Wang, X., & Chouinard, J. (2012). Physical layer authentication in OFDM systems based on hypothesis testing of CFO estimates. In: proceedings of IEEE international conference on communications, ICC 2012, Ottawa, ON, Canada, June 10-15, 2012, IEEE, pp. 3559–3563. https://doi.org/10.1109/ICC.2012.6364429
Hou, W., Wang, X., Chouinard, J., & Refaey, A. (2014). Physical layer authentication for mobile systems with time-varying carrier frequency offsets. IEEE Transactions on Communications, 62(5), 1658–1667. https://doi.org/10.1109/TCOMM.2014.032914.120921.
Jr, W. C. J. (1974). Microwave Mobile Communications. Wiley/IEEE Press. https://doi.org/10.1109/9780470545287.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552.
Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1), 95–108. https://doi.org/10.1115/1.3658902.
Kay, S., & Hall, P. (1998). Fundamentals of statistical signal processing, volume II: Detection theory. Technometrics. https://doi.org/10.1080/00401706.1995.10484391.
Kim, H., & El Gamal, A. (2016). Capacity theorems for broadcast channels with two channel state components known at the receivers. IEEE Transactions on Information Theory, 62(12), 6917–6930. https://doi.org/10.1109/TIT.2016.2620159.
Latif, S. A., Wen, F. B. X., Iwendi, C., Wang, L. F., Mohsin, S. M., Han, Z., & Band, S. S. (2022). AI-empowered, blockchain and SDN integrated security architecture for IoT network of cyber physical systems. Computer Communications, 181, 274–283. https://doi.org/10.1016/j.comcom.2021.09.029.
Lin, D. D., Pacheco, R. A., Lim, T. J., & Hatzinakos, D. (2006). Joint estimation of channel response, frequency offset, and phase noise in OFDM. IEEE Transactions on Signal Processing, 54(9), 3542–3554. https://doi.org/10.1109/TSP.2006.879265.
Liu, FJ., Wang, X., & Tang, H. (2011). Robust physical layer authentication using inherent properties of channel impulse response. In: MILCOM, 2011-2011 IEEE Military Communications Conference,Baltimore, MD, USA, November 7-10, 2011, IEEE, pp 538–542. https://doi.org/10.1109/MILCOM.2011.6127727
Liu, F. J., & Wang, X. (2016). Physical layer authentication enhancement using two-dimensional channel quantization. IEEE Transactions on Wireless Communications, 15(6), 4171–4182. https://doi.org/10.1109/TWC.2016.2535442.
Mehrpouyan, H., Nasir, A. A., Blostein, S. D., Eriksson, T., Karagiannidis, G. K., & Svensson, T. (2012). Joint estimation of channel and oscillator phase noise in MIMO systems. IEEE Transactions on Signal Processing, 60(9), 4790–4807. https://doi.org/10.1109/TSP.2012.2202652.
Mohseni, S. (2013). Study the carrier frequency offset (cfo) for wireless ofdm. https://digitalcommons.du.edu/etd/438
Nadeem, Q., Kammoun, A., Debbah, M., & Alouini, M. (2018). Design of 5G full dimension massive MIMO systems. IEEE Transactions on Communications, 66(2), 726–740. https://doi.org/10.1109/TCOMM.2017.2762685.
Olwal, T. O., Djouani, K., & Kurien, A. M. (2016). A survey of resource management toward 5G radio access networks. IEEE Communications Surveys and Tutorials, 18(3), 1656–1686. https://doi.org/10.1109/COMST.2016.2550765.
Pitarokoilis, A., Mohammed, S. K., & Larsson, E. G. (2015). Uplink performance of time-reversal MRC in massive MIMO systems subject to phase noise. IEEE Transactions on Wireless Communications, 14(2), 711–723. https://doi.org/10.1109/TWC.2014.2359018.
Polak, A. C., Dolatshahi, S., & Goeckel, D. (2011). Identifying wireless users via transmitter imperfections. IEEE Journal on Selected Areas in Communications, 29(7), 1469–1479. https://doi.org/10.1109/JSAC.2011.110812.
Polak, A. C., & Goeckel, D. L. (2015). Identification of wireless devices of users who actively fake their RF fingerprints with artificial data distortion. IEEE Transactions on Wireless Communications, 14(11), 5889–5899. https://doi.org/10.1109/TWC.2015.2443794.
Salim, O. H., Nasir, A. A., Mehrpouyan, H., Xiang, W., Durrani, S., & Kennedy, R. A. (2014). Channel, phase noise, and frequency offset in OFDM systems: Joint estimation, data detection, and hybrid cramér-rao lower bound. IEEE Transactions on Communications, 62(9), 3311–3325. https://doi.org/10.1109/TCOMM.2014.2345056.
Shamshirband, S., Shamshirband, M., Chronopoulos, A. T., Montieri, A., Palumbo, F., & Pescapè, A. (2020). Computational intelligence intrusion detection techniques in mobile cloud computing environments: Review, taxonomy, and open research issues. Journal of Information Security and Applications, 55, 102582. https://doi.org/10.1016/j.jisa.2020.102582.
Shan, D., Zeng, K., Xiang, W., Richardson, P. C., & Dong, Y. (2013). PHY-CRAM: Physical layer challenge-response authentication mechanism for wireless networks. IEEE Journal on Selected Areas in Communications, 31(9), 1817–1827. https://doi.org/10.1109/JSAC.2013.130914.
Shi, Y., & Jensen, M. A. (2011). Improved radiometric identification of wireless devices using MIMO transmission. IEEE Transactions on Information Forensics and Security, 6(4), 1346–1354. https://doi.org/10.1109/TIFS.2011.2162949.
Sonkoly, B., Szabó, R., Németh, B., Czentye, J., Haja, D., Szalay, M., et al. (2020). 5G applications from vision to reality: Multi-operator orchestration. IEEE Journal on Selected Areas in Communications, 38(7), 1401–1416. https://doi.org/10.1109/JSAC.2020.2999684.
Tichavsky, P., & Muravchik, C. H. (1998). Posterior cramer-rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 46(5), 1386–1396. https://doi.org/10.1109/78.668800.
Trees, HLV., Bell, KL. (2013). Detection estimation and modulation theory, part I: Detection, estimation, and filtering theory, 2nd Edition. A Papoulis Probability Random Variables & Stochastic Processes, 8(10), 293–303.
Wan, X., Xiao, L., Li, Q., & Han, Z. (2017). PHY-layer authentication with multiple landmarks with reduced communication overhead. In: 2017 IEEE international conference on communications (ICC), pp. 1–6. https://doi.org/10.1109/ICC.2017.7997250
Wang, X., Hao, P., & Hanzo, L. (2016). Physical-layer authentication for wireless security enhancement: Current challenges and future developments. IEEE Communications Magazine, 54(6), 152–158. https://doi.org/10.1109/MCOM.2016.7498103.
Wang, W., Sun, Z., Piao, S., Zhu, B., & Ren, K. (2016). Wireless physical-layer identification: Modeling and validation. IEEE Transactions on Information Forensics and Security, 11(9), 2091–2106. https://doi.org/10.1109/TIFS.2016.2552146.
Wang, C., Wang, H. M., & Xia, X. G. (2015). Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks. IEEE Transactions on Wireless Communications, 14(2), 589–605. https://doi.org/10.1109/TWC.2014.2354635.
Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K., & Gao, X. (2018). A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 36(4), 679–695. https://doi.org/10.1109/JSAC.2018.2825560.
Xiao, L., Greenstein, L. J., Mandayam, N. B., & Trappe, W. (2008). Using the physical layer for wireless authentication in time-variant channels. IEEE Transactions on Wireless Communications, 7(7), 2571–2579. https://doi.org/10.1109/TWC.2008.070194.
Xiao, L., Greenstein, L. J., Mandayam, N. B., & Trappe, W. (2009). Channel-based spoofing detection in frequency-selective Rayleigh channels. IEEE Transactions on Wireless Communications, 8(12), 5948–5956. https://doi.org/10.1109/TWC.2009.12.081544.
Xiao, L., Sheng, G., Wan, X., Su, W., & Cheng, P. (2019). Learning-based PHY-layer authentication for underwater sensor networks. IEEE Communications Letters, 23(1), 60–63. https://doi.org/10.1109/LCOMM.2018.2877317.
Xiao, L., Wan, X. Y., & Han, Z. (2018). PHY-layer authentication with multiple landmarks with reduced overhead. IEEE Transactions on Wireless Communications, 17(3), 1676–1687. https://doi.org/10.1109/TWC.2017.2784431.
Yu, P. L., Baras, J. S., & Sadler, B. M. (2008). Physical-layer authentication. IEEE Transactions on Information Forensics and Security, 3(1), 38–51. https://doi.org/10.1109/TIFS.2007.916273.
Zhang, P., Liu, J., Shen, Y., & Jiang, X. (2020). Exploiting channel gain and phase noise for PHY-layer authentication in massive MIMO systems. IEEE Transactions on Information Forensics and Security, 16, 4265–4279. https://doi.org/10.1109/TIFS.2020.3029894.
Zhang, P., Liu, J., Shen, Y., Li, H., & Jiang, X. (2020). Lightweight tag-based PHY-layer authentication for IoT devices in smart cities. IEEE Internet Things Journal, 7(5), 3977–3990. https://doi.org/10.1109/JIOT.2019.2958079.
Zhang, P., Shen, Y., Jiang, X., & Wu, B. (2020). Physical layer authentication jointly utilizing channel and phase noise in MIMO systems. IEEE Transactions on Communications, 68(4), 2446–2458. https://doi.org/10.1109/TCOMM.2020.2967393.
Zhao, C., Huang, M., Huang, L., Du, X., & Guizani, M. (2017). A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. Computer Networks, 128, 164–171. https://doi.org/10.1016/j.comnet.2017.05.028.
Acknowledgements
This paper is supported by the National Key R&D Program of China (Grant No. 2018-YFE0207600), the Natural Science Foundation of China (NSFC) under Grant 61972308, and the Natural Science Foundation of Anhui Province in China under Grant 2008085QF324.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, Y., Zhang, P., Liu, J. et al. Physical layer authentication in MIMO systems: a carrier frequency offset approach. Wireless Netw 28, 1909–1921 (2022). https://doi.org/10.1007/s11276-022-02916-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-022-02916-y