Abstract
The proposed manuscript represents the novel approach to achieve the frequency reconfigurability of the microstrip patch antenna. The tunability is achieved with the FR-4 based low profile material using the PIN diodes. Performance is compared for the simple patch antenna, radome based patch antenna without metamaterial elements and differently shaped metamaterial elements. The presented design provides a minimum reflectance response of −52.20 dB for the reconfigurable circular-shaped metamaterial ring loaded patch antenna. The maximum bandwidth of 5160 MHz is achieved for the circular-shaped metamaterial ring loaded patch antenna. The maximum gain of 2.93 dB is achieved in the radome based patch antenna without metamaterial elements. Maximum tunability of 80 MHz is achieved. The maximum normalized directivity of 110° is achieved with the Square shaped metamaterial ring loaded patch antenna. Simulated results compared with the measured results for the confirmation.The presented design opens new applications in satellite communication, surveillance, wifi devices and manymore. The performance of the presented design also compared with the earlier published work.
Similar content being viewed by others
References
Patel, S. K., & Kosta, Y. (2013). Triband microstrip-based radiating structure design using split ring resonator and complementary split ring resonator. Microwave and Optical Technology Letters, 55(9), 2219–2222. https://doi.org/10.1002/mop.27751
Florencio Díaz, R., Rodríguez Boix, R., Carrasco Yépez, F., Encinar Garcinuño, J., Barba Gea, M., & Pérez Palomino, G. (2014). Broadband reflectarrays made of cells with three coplanar parallel dipoles. Microwave and Optical Technology Letters, 56, 748–753.
Nguyen, T. K., Patel, S. K., Lavadiya, S., Parmar, J., & Bui, C. D. (2021). (2022) Design and fabrication of multiband reconfigurable copper and liquid multiple complementary split-ring resonator based patch antenna. Waves in Random and Complex Media, 10(1080/17455030), 2024623.
Brown, E. R. (1998). RF-MEMS switches for reconfigurable integrated circuits. IEEE Transaction on Microwave Theory Techniques, 46, 1868–1880.
Keerthi, R. S., Dhabliya, D., Elangovan, P., Borodin, K., Parmar, J., & Patel, S. K. (2021). Tunable high-gain and multiband microstrip antenna based on liquid/copper split-ring resonator superstrates for C/X band communication. Physica B Condensed Matter. https://doi.org/10.1016/j.physb.2021.413203
Jin, G., Li, M., Liu, D., & Zeng, G. (2018). A simple planar pattern-reconfigurable antenna based on arc dipoles. IEEE Antennas and Wireless Propagation Letters, 17(9), 1664–1668. https://doi.org/10.1109/LAWP.2018.2862624
Patel, S. K., Lavadiya, S., Kosta, Y. P., Kosta, M., Nguyen, T. K., & Dhasarathan, V. (2020). Numerical investigation of liquid metamaterial-based superstrate microstrip radiating structure. Physica B Condensed Matter. https://doi.org/10.1016/j.physb.2020.412095
Boufrioua, A. (2020). Frequency reconfigurable antenna designs using PIN diode for wireless communication applications. Wireless Personal Communications, 110(4), 1879–1885. https://doi.org/10.1007/s11277-019-06816-x
Kawdungta, S., & Phongcharoenpanich, C. (2020). Circularly polarized reconfigurable microstrip loop antenna using parasitic patches and PIN diodes. Frequenz. https://doi.org/10.1515/freq-2019-0160
Sumathi, K., Lavadiya, S., Yin, P. Z., Parmar, J., & Patel, S. K. (2021). High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications. Wireless Networks. https://doi.org/10.1007/s11276-021-02567-5
Gupta, K. M. and Gupta, N. (2016). Microwave Diodes (Varactor Diode, p-i-n Diode, IMPATT Diode, TRAPATT Diode, BARITT Diode, etc.) pp. 285–309.
Yadav, A. M., Panagamuwa, C. J., Seager, R. D. Investigating the Effects of Control Lines on a Frequency Reconfigurable Patch Antenna.”
Charola, S., Patel, S. K., Parmar, J., & Jadeja, R. (2021). Multiband Jerusalem cross-shaped angle insensitive metasurface absorber for X-band application. Journal of Electromagnetic Waves and Applications. https://doi.org/10.1080/09205071.2021.1960643
Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2018). Pattern controlled and frequency tunable microstrip antenna loaded with multiple split ring resonators. IET Microwaves Antennas Propagations. https://doi.org/10.1049/iet-map.2017.0319
Wong, K. (2004) Compact and broadband microstrip antennas.
Patel, S. K., & Kosta, Y. (2013). Investigation on radiation improvement of corner truncated triband square microstrip patch antenna with double negative material. Journal of Electromagnatic Waves and Applications. https://doi.org/10.1080/09205071.2013.789407
Ding, Y., Li, M., Chang, H.-X., & Qin, K. (2014). A DUAL-BAND HIGH GAIN ANTENNA BASED ON SPLIT RING RESONATORS AND CORRUGATED PLATE. Progress in Electromagnetics Research Letters, 44, 87–92. https://doi.org/10.2528/PIERL13112704
Patel, S. K., Shah, K. H., & Kosta, Y. P. (2018). Multilayer liquid metamaterial radome design for performance enhancement of microstrip patch antenna. Microwave and Optical Technology Letters. https://doi.org/10.1002/mop.31024
Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2017). Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media, 27(1), 92–102. https://doi.org/10.1080/17455030.2016.1203081
Garver, R. V. (1976) Microwave diode control devices. ah, 1976.
Patel, S. K., Shah, K. H., & Kosta, Y. P. (2019). Frequency-reconfigurable and high-gain metamaterial microstrip-radiating structure. Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2018.1452309
Balanis, C. (2016) Antenna Theory: Analysis and Design, Fourth Edition.
Patel, S. K., Kosta, Y. P., & Charola, S. (2018). Liquid metamaterial based radome design. Microwave and Optical Technology Letters. https://doi.org/10.1002/mop.31350
Bhardwaj, D., Bhatnagar, D., Sancheti, S., Microwaves, B. S.-I. & A. (2008) Design of square patch antenna with a notch on FR4 substrate. IET.
Lavadiya, S. P., Patel, S. K., & Maria, R. (2021). High gain and frequency reconfigurable copper and liquid metamaterial tooth based microstrip patch antenna. AEU – International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2021.153799
Li, P. K., Shao, Z. H., Wang, Q., & Cheng, Y. J. (2015). Frequency- and pattern-reconfigurable antenna for multistandard wireless applications. IEEE Antennas and Wireless Propagation Letters, 14, 333–336. https://doi.org/10.1109/LAWP.2014.2359196
Selvam, Y. P., Elumalai, L., Alsath, M. G. N., Kanagasabai, M., Subbaraj, S., & Kingsly, S. (2017). Novel frequency- a nd pattern-reconfigurable rhombic patch antenna with switchable polarization. IEEE Antennas and Wireless Propagation Letters, 16, 1639–1642. https://doi.org/10.1109/LAWP.2017.2660069
Dewan, R., Rahim, M. K. A., Hamid, M. R., Himdi, M., Majid, H. A., & Samsuri, N. A. (2018). HIS-EBG unit cells for pattern and frequency reconfigurable dual band array antenna. Prog. Electromagn. Res. M, 76, 123–132. https://doi.org/10.2528/PIERM18090202
Ashvanth, B., Partibane, B., Nabi Alsath, M. G., & Kalidoss, R. (2019). Tunable dual band antenna with multipattern reconfiguration for vehicular applications”. International Journal of RF Microwave Computer and Engineering, 29, 12. https://doi.org/10.1002/mmce.21973
Han, L., Wang, C., Zhang, W., Ma, R., & Zeng, Q. (2018). Design of frequency- and pattern-reconfigurable wideband slot antenna. International Journal of Antennas Propagations. https://doi.org/10.1155/2018/3678018
Yadav, A. M., Panagamuwa, C. J., & Seager, R. D. (2010). “Investigating the effects of control lines on a frequency reconfigurable patch antenna. 2010 Loughbrgh Antennas & Propagations Confernce LAPC, 2010, 605–608. https://doi.org/10.1109/LAPC.2010.5666900
Amarnatha Sarma, C., Inthiya,z S., Madhav, B. T. P., Sree Lakshmi, P. (2021). Frequency Reconfigurable elliptical microstrip patch antenna using resonator, partial removal in the ground, and PIN diode for L and C band applications. Journal of Physics: Conference Serie.
Chiu, C. Y., Li, J., Song, S., & Murch, R. D. (2012). Frequency-reconfigurable pixel slot antenna. IEEE Transactions on Antennas and Propagation, 60(10), 4921–4924. https://doi.org/10.1109/TAP.2012.2207334
Medeiros, C., Castela, A., Costa, J., Fernandes, C. (2007).Evaluation of Modelling Accuracy of Reconfigurable Patch Antennas,” pp. 1–4, 2014.
Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2017). Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2016.1203081
Bhattacharya, A. Jyoti, R. (2015). Frequency reconfigurable patch antenna using PIN diode at X-band,” 2015 IEEE 2nd International Conference Recent Trends Influencee System ReTIS 2015 - Process, pp. 81–86, https://doi.org/10.1109/ReTIS.2015.7232857.
Mansoul, A., Kimouche, H. (2013) A simple frequency reconfigurable microstrip patch antenna for wireless communication,” In 2013 8th International Workshop on Systems, Signal Processing and Their Applications, WoSSPA 2013, pp. 306–309, doi: https://doi.org/10.1109/WoSSPA.2013.6602381.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kumar, R.V., Vanitha, M., Prabu, R.T. et al. Multiband miniaturisefrequency reconfigurable patch antenna using PIN diodes. Wireless Netw 28, 2485–2497 (2022). https://doi.org/10.1007/s11276-022-02946-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-022-02946-6