Skip to main content
Log in

Gain and isolation improvement of compact MIMO printed dipole arrays realized by second iteration Giuseppe Peano AMC for 4G/5G wireless networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A low-profile 16-element printed dipole antenna (PDA) array supported by broadband Giuseppe Peano artificial magnetic conductor (AMC) is introduced for wireless communication systems. Firstly, a suggested PDA with a pair of the microstrip dipoles excited by an T-shaped microstrip feedline is used to expand the bandwidth in the measured range of 5.35–6.7 GHz (S11 ≤  − 10 dB). Then, the suggested second iteration Giuseppe Peano AMC reflector is inserted into the PDA to gain improved radiation efficiency. The realized result for the PDA with the 3 × 3 Giuseppe Peano AMC array with second iteration exhibits − 10 dB measured bandwidth from 4.50 to 7.20 GHz (more than 46%) for WLAN/ WiMAX and 5G applications. The suggested PDA with AMC compared to the PDA without AMC exhibits a size reduction of 35%, enhanced gain up to 8 dBi, and excellent impedance matching (at least − 18 dB) with uni-directional radiation patterns. By loading a 12 × 12 AMC reflector into the sixteen-element array of PDA, a low profile wideband structure with enhanced radiation properties is achieved. The measured S-parameters show the broad bandwidth from 4.46 to 7.02 GHz in C-band with enhanced gains of all elements and the suitable isolation of more than 28.5 dB for multiple-input multiple-output (MIMO) systems. Besides, the novel AMC unit cell is realized based on the recognized method as second iteration Giuseppe Peano fractal patch to operate at 6.10 GHz with an AMC bandwidth of 5.15–7.10 GHz (32%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Malekpoor, H., & Jam, S. (2018). Design, analysis, and modeling of miniaturized multi-band patch arrays using mushroom-type electromagnetic band gap structures. International Journal of RF and Microwave Computer-Aided Engineering., 28(6), 1–13.

    Article  Google Scholar 

  2. Yang, X., Liu, Y., Xu, Y. X., & Gong, S.-x. (2017). Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot. IEEE Antennas and Wireless Propagation Letter, 16, 2175–2178.

    Article  Google Scholar 

  3. Jam, S., & Malekpoor, H. (2016). Compact 1×4 patch antenna array by means of EBG structures with enhanced bandwidth. Microwave and Optical Technology Letters, 58(12), 2983–2989.

    Article  Google Scholar 

  4. Althuwayb, A. A. (2021). Enhanced radiation gain and efficiency of a metamaterial inspired wideband microstrip antenna using substrate integrated waveguide technology for sub-6 GHz wireless communication systems. Microwave and Optical Technology Letters, 63(7), 1892–1898.

    Article  Google Scholar 

  5. Foroozesh, A., & Shafai, L. (2009). Effects of artificial magnetic conductors in the design of low-profile high-gain planar antennas with high-permittivity dielectric superstrate. IEEE Antennas and Wireless Propagation Letters, 8, 10–13.

    Article  Google Scholar 

  6. Alibakhshikenari, M., Babaeian, F., Virdee, B. S., Aïssa, S., Azpilicueta, L., & Hwan, C. (2020). A comprehensive survey on "various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems. IEEE Access, 8, 192965–193004.

    Article  Google Scholar 

  7. Malekpoor, H. (2019). Comparative investigation of reflection and band gap properties of finite periodic wideband artificial magnetic conductor surfaces for microwave circuits applications in X-band. International Journal of RF and Microwave Computer-Aided Engineering., 29(10), e21874.

    Article  Google Scholar 

  8. Bell, J. M., Iskander, M. F., & Lee, J. J. (2007). Ultrawideband hybrid EBG/ferrite ground plane for low-profile array antennas. IEEE Transactions on Antennas and Propagation, 55(1), 4–12.

    Article  Google Scholar 

  9. Nashaat, D., Elsadek, H. A., Abdallah, E. A., Iskander, M. F., & Hennawy, H. M. E. (2011). Ultrawide bandwidth 2×2 microstrip patch array antenna using electromagnetic band-gap structure (EBG). IEEE Transactions on Antennas and Propagation, 59(5), 1528–1534.

    Article  Google Scholar 

  10. Barth, S., & Iyer, A. K. (2016). A miniaturized uniplanar metamaterial-based EBG for parallel-plate mode suppression. IEEE Transactions on Microwave Theory and Techniques, 64(4), 1176–1185.

    Article  Google Scholar 

  11. Sievenpiper, D., Zhang, L., Broas, R. F. J., Alex´opolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059–2074.

    Article  Google Scholar 

  12. Deng, J. Y., Li, J. Y., Zhao, L., & Guo, L. X. (2017). A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications. IEEE Antennas Wireless Propagation Letters, 6, 2270–2273.

    Article  Google Scholar 

  13. Rajagopal, S., Chennakesavan, G., Subburaj, D. R. P., Srinivasan, R., & Varadhan, A. (2017). A dual polarized antenna on a novel broadband multilayer artificial magnetic conductor backed surface for LTE/CDMA/GSM base station applications. AEU - International Journal of Electronics and Communications, 80, 73–79.

    Article  Google Scholar 

  14. Lee, H., & Lee, B. (2016). Compact broadband dual-polarized antenna for indoor MIMO wireless communication systems. IEEE Transactions on Antennas and Propagation, 64, 766–770.

    Article  MathSciNet  Google Scholar 

  15. Ameri, E., Esmaeli, S. H., & Sedighy, S. H. (2018). Wide band radar cross section reduction by thin AMC structure. AEU - International Journal of Electronics and Communications, 93, 150–153.

    Article  Google Scholar 

  16. Ghosh, S., Tran, T. N., & Ngoc, T. L. (2014). Dual-layer EBG based miniaturized multi-element antenna for MIMO systems. IEEE Transactions on Antennas and Propagation, 62(8), 3985–3997.

    Article  Google Scholar 

  17. Liu, X. Y., Di, Y. H., Liu, H., Wu, Z., & Tentzeris, M. M. (2015). A planar windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications. IEEE Antennas and Wireless Propagation Letters, 15, 64–67.

    Article  Google Scholar 

  18. Yang, S., Chen, Y., Yu, C., Gong, Y., & Tong, F. (2020). Design of a low-profile, frequency- reconfigurable, and high gain antenna using a Varactor-Loaded AMC ground. IEEE Access, 8, 158635–158646.

    Article  Google Scholar 

  19. Zhu, J., Li, S., Liao, S., & Xue, Q. (2018). Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters, 17, 458–462.

    Article  Google Scholar 

  20. Ghosh, A., Kumar, V., Sen, G., & Das, S. (2018). Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor. IET Microwaves, Antennas & Propagation, 12(8), 1400–1406.

    Article  Google Scholar 

  21. Othman, N., Samsuri, N. A., Rahim, M. K. A., & Kamardin, K. (2020). Low specific absorption rate and gain-enhanced meandered bowtie antenna utilizing flexible dipole-like artificial magnetic conductor for medical application at 2.4 GHz. Microwave and Optical Technology Letters, 62, 3881–3889.

    Article  Google Scholar 

  22. Hadarig, R. C., de Cos, M. E., & Heras, F. L. (2013). Novel miniaturized artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters, 12, 174–177.

    Article  Google Scholar 

  23. Malekpoor, H., & Hamidkhani, M. (2021). Performance enhancement of low-profile wideband multi-element MIMO arrays backed by AMC surface for vehicular wireless communications. IEEE ACCESS, 9, 166206–166222.

    Article  Google Scholar 

  24. Xu, Z., & Deng, C. (2020). High-Isolated MIMO Antenna Design Based on Pattern Diversity for 5G Mobile Terminals. IEEE Antennas and Wireless Propagation Letters, 19, 467–471.

    Article  Google Scholar 

  25. Wang, Z., Zhang, G., Yin, Y., & Wu, J. (2014). Design of a Dual-Band High-Gain Antenna Array for WLAN and WiMAX Base Station. IEEE Antennas and Wireless Propagation Letters, 13, 1721–1724.

    Article  Google Scholar 

  26. Jam, S., & Malekpoor, H. (2016). Analysis on wideband patch arrays using unequal arms with equivalent circuit model in X-band. IEEE Antennas and Wireless Propagation Letters, 15, 1861–1864.

    Article  Google Scholar 

  27. Malekpoor, H., & Hamidkhani, M. (2021). Bandwidth and gain improvement for reduced size of stacked microstrip antenna fed by folded triangular patch with half V-shaped slot. International Journal of RF and Microwave Computer-Aided Engineering, 31(6), e22649.

    Article  Google Scholar 

  28. Hamidkhani, M., Malekpoor, H., & Oraizi, H. (2019). Oscillator phase-noise reduction using high-Qsc active Giuseppe Peano fractal resonators. IEEE Microwave and Wireless Components Letters, 29, 354–356.

    Article  Google Scholar 

  29. Joubert, J., Vardaxoglou, J. C., Whittow, W. G., & Odendaal, J. W. (2012). CPW-fed cavity-backed slot radiator loaded with an AMC reflector. IEEE Transactions on Antennas and Propagation, 60(2), 735–742.

    Article  Google Scholar 

  30. Feng, D., Zhai, H., Xi, L., Yang, S., Zhang, K., & Yang, D. (2017). A broadband low-profile circular-polarized antenna on an AMC reflector. IEEE Antennas and Wireless Propagation Letters, 16, 2840–2843.

    Google Scholar 

  31. Malekpoor, H., & Jam, S. (2016). Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface. IEEE Transactions on Antennas and Propagation, 64(11), 4626–4638.

    Article  Google Scholar 

  32. Malekpoor, H., Abolmasoumi, A., & Hamidkhani, M. (2022). High gain, high isolation, and low-profile two-element MIMO array loaded by the Giuseppe Peano AMC reflector for wireless communication systems. IET Microwaves, Antennas & Propagation, 16(1), 46–61.

    Article  Google Scholar 

  33. Zhong, Y. W., Yang, G. M., & Zhong, L. R. (2015). Gain enhancement of bow-tie antenna using fractal wideband artificial magnetic conductor ground. Electronics Letters, 51(4), 315–317.

    Article  Google Scholar 

  34. Turpin, J. P., Wu, Q., Werner, D. H., Martin, B., Bray, M., & Lier, E. (2014). Near-zero-index metamaterial lens combined with AMC metasurface for high-directivity low-profile antennas. IEEE Transactions on Antennas and Propagation, 62(4), 1928–1936.

    Article  Google Scholar 

  35. Raad, H. R., Abbosh, A. I., Al-Rizzo, H. M., & Rucker, D. G. (2013). Flexible and compact AMC based antenna for telemedicine applications. IEEE Transactions on Antennas and Propagation, 61(2), 524–531.

    Article  Google Scholar 

  36. Vaughan, R. G., & Andersen, J. B. (1987). Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology, 36(4), 149–172.

    Article  Google Scholar 

  37. Chae, S. H., Oh, S. K., & Park, S. O. (2007). Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas and Wireless Propagation Letters, 6, 122–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Malekpoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekpoor, H., Abolmasoumi, A. Gain and isolation improvement of compact MIMO printed dipole arrays realized by second iteration Giuseppe Peano AMC for 4G/5G wireless networks. Wireless Netw 28, 1949–1962 (2022). https://doi.org/10.1007/s11276-022-02950-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02950-w

Keywords

Navigation