Skip to main content
Log in

Negative input impedance of a dipole antenna printed on a grounded tellegen metamaterial substrate

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recently, as the science of materials has greatly advanced, the achieved results have changed the conventional vision of the intrinsic properties of materials such as chiral and metamaterial. An important class of existing microwave devices takes advantage of the bianisotropic materials phenomena and properties for the development of innovative devices that respond to the needs of modern technologies. In this scope, we have investigated the bianisotropic Tellegen medium used as a substrate for a printed dipole antenna; a complex material that is less addressed in the literature. Numerical studies are based on the development of the spectral Green’s functions and the method of moments is used to solve for the electromagnetic field components and the dipole input impedance. The behavior of the magnetoelectric elements of the Tellegen medium is highlighted by analyzing their effect on the electromagnetic field distribution and input impedance. Initial results reveal a negative real part of the dipole input impedance for some values of the magnetoelectric elements. A result that should be viewed in the light of unusual behavior of synthetic materials such as negative refractive index in metamaterials. An elementary explanation for this behavior is presented based on the analysis of the electromagnetic field distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lakhtakia, A. (2002). Conditions for circularly polarized plane wave propagation in a linear bianisotropic medium. Electromagnetics, 22(2), 123–127.

    Article  Google Scholar 

  2. Naheed, M., & Faryad, M. (2020). Surface plasmon-polariton waves guided by an interface of a metal and an obliquely mounted uniaxially chiral, bianisotropic material. Journal of Electromagnetic Waves and Applications, 34(13), 1756–1770.

    Article  Google Scholar 

  3. Sihvola, A., & Lindell, I. V. (2017). Bianisotropic materials and PEM. In C. R. C. Press (Ed.), Theory and phenomena of metamaterials (pp. 1–26)

    Google Scholar 

  4. Simovski, C. R., Verney, E., Zouhdi, S., & Fourrier-Lamer, A. (2002). Homogenization of planar bianisotropic arrays on the dielectric interface. Electromagnetics, 22(3), 177–189.

    Article  Google Scholar 

  5. Weiglhofer, W. S., & Lakhtakia, A. (1999). On electromagnetic waves in biaxial bianisotropic media. Electromagnetics, 19(4), 351–362.

    Article  Google Scholar 

  6. Lindell, I. V., Tretyakov, S. A., Nikoskinen, K. I., & Ilvonen, S. (2001). BW media-Media with negative parameters, capable of supporting backward waves. Microwave and Optical Technology Letters, 31(2), 129–133.

    Article  Google Scholar 

  7. Tretyakov, S. A. (2017). Complex-media electromagnetics and metamaterials. Journal of Optics, 19(8), 084006.

    Article  Google Scholar 

  8. Zebiri, C., & Sayad, D. (2020). Effect of bianisotropy on the characteristic impedance of a shielded microstrip line for wideband impedance matching applications. Waves in Random and Complex Media, 1–14, 2020. https://doi.org/10.1080/17455030.2020.1752957

    Article  Google Scholar 

  9. Weiglhofer, W. S. (1994). Dyadic green function for unbounded general uniaxial bianisotropic medium. International journal of electronics, 77(1), 105–115.

    Article  Google Scholar 

  10. Zebiri, C., Benabdelaziz, F., & Sayad, D. (2012). Surface waves investigation of a bianisotropic chiral substrate resonator. Progress In Electromagnetics Research B, 40, 399–414.

    Article  Google Scholar 

  11. Reddy, G. B., Adhithya, M. H., & Kumar, D. S. (2020). Design of circularly polarized patch antennas using anisotropic high refractive index metamaterial loading. Electromagnetics, 40(3), 186–198.

    Article  Google Scholar 

  12. Pazynin, L. A., Pazynin, V. L., & Sliusarenko, H. O. (2017). Closed form of green function for some types of biaxial anisotropic media. Electromagnetics, 37(2), 106–112.

    Article  Google Scholar 

  13. Peric, M. T., Ilić, S. S., Vučković, A. N., & Raičević, N. B. (2021). Analysis of bi-isotropic media using hybrid boundary element method. The Applied Computational Electromagnetics Society Journal (ACES), 36, 1265–1273.

    Article  Google Scholar 

  14. Sayad, D., Zebiri, C., Elfergani, I., Rodriguez, J., Abobaker, H., Ullah, A., Abd-Alhameed, R., Otung, I., & Benabdelaziz, F. (2020). Complex bianisotropy effect on the propagation constant of a shielded multilayered coplanar waveguide using improved full generalized exponential matrix technique. Electronics, 9(2), 243.

    Article  Google Scholar 

  15. Hasar, U. C., Ozturk, G., Kaya, Y., Barroso, J. J., & Ertugrul, M. (2021). Simple and accurate electromagnetic characterization of omega-class bianisotropic metamaterials using the state transition matrix method. IEEE Transactions on Antennas and Propagation, 69(10), 7064–7067.

    Article  Google Scholar 

  16. Xia, L., Yang, B., Guo, Q., Gao, W., Liu, H., Han, J., Zhang, W., & Zhang, S. (2019). Simultaneous TE and TM designer surface plasmon supported by bianisotropic metamaterials with positive permittivity and permeability. Nanophotonics, 8(8), 1357–1362.

    Article  Google Scholar 

  17. Das, G. K., Basu, S., Mandal, B., Mitra, D., Augustine, R., & Mitra, M. (2020). Gain-enhancement technique for wearable patch antenna using grounded metamaterial. IET Microwaves, Antennas and Propagation, 14(15), 2045–2052.

    Article  Google Scholar 

  18. Zaid, J., & Denidni, T. A. (2021). Miniaturized circularly-polarized patch antenna using an artificial metamaterial substrate”. Progress In Electromagnetics Research, 109, 1–12.

    Article  Google Scholar 

  19. Shen, Z., Fang, X., Li, S., Zhang, L., & Chen, X. (2022). Mechanically reconfigurable and electrically tunable active terahertz chiral metamaterials. Extreme Mechanics Letters, 51, 101562.

    Article  Google Scholar 

  20. Buzov, A. L., Buzova M. A., Minkin, M. A., Klyuev, D. S., and Neshcheret, A. M., (2021) Calculation of characteristics of planar antenna arrays with substrates made of chiral metamaterials taking into account the dispersion of macroscopic parameters. IEEE 15th European Conference on Antennas and Propagation (EuCAP), 1–5.

  21. Deng, X., Zhang, Z., Cao, J., Zhang, Z., & Tian, Y. (2019). Electromagnetic scattering analysis of normal chiral, metamaterials chiral and chiral nihility materials. Electromagnetics, 39(4), 227–240.

    Article  Google Scholar 

  22. Klyuev, D. S., Neshcheret, A. M., Osipov, O. V., Potapov, A. A., & Sokolova, J. V. (2019). Microstrip and fractal antennas based on chiral metamaterials in MIMO systems. Chaotic modeling and simulation international conference (pp. 295–306). Springer.

    Google Scholar 

  23. Klyuev, D. S., Neshcheret, A. M., Osipov, O. V., Sokolova, Y. V., & Tabakov, D. P. (2021). Solution of a two-dimensional electrodynamic problem of determining of the current density distribution function over a strip radiating structure based on chiral metamaterials. Lobachevskii Journal of Mathematics, 42(6), 1345–1354.

    Article  MathSciNet  Google Scholar 

  24. Asadchy, V. S., Díaz-Rubio, A., & Tretyakov, S. A. (2018). Bianisotropic metasurfaces: Physics and applications. Nanophotonics, 7(6), 1069–1094.

    Article  Google Scholar 

  25. Budhu, J., & Grbic, A. (2021). Recent advances in bianisotropic boundary conditions: theory, capabilities, realizations, and applications. Nanophotonics. https://doi.org/10.1515/nanoph-2021-0401

    Article  Google Scholar 

  26. Budhu, J., Grbic A., (2021) Passive metasurface antenna with perfect aperture efficiency. In: 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), New York, NY.

  27. Bouknia, M. L., Zebiri, C., Sayad, D., Elfergani, I., Matin, M., Desai, A., & Abobaker, H. (2022). Effect analysis of the general complex reciprocal gyro-bianisotropic metamaterial medium on the input impedance of a printed dipole antenna. Alexandria Engineering Journal, 61(5), 3691–3696.

    Article  Google Scholar 

  28. Caloz, C., & Achouri, K. (2021). Electromagnetic metasurfaces: Theory and applications. Wiley.

    Google Scholar 

  29. Popov, V., Burokur, S. N., & Boust, F. (2020). Conformal sparse metasurfaces for wavefront manipulation. Physical Reviews Applied, 14(4), 4007.

    Article  Google Scholar 

  30. Budhu, J., Grbic A., (2019). A rigorous approach to designing reflectarrays. ICECOM 2019—23rd International Conference on Applied Electromagnetics and Communications, Proceedings.

  31. Klyuev, D. S., Minkin, M. A., Mishin, D. V., Neshcheret, A. M., & Tabakov, D. P. (2018). Characteristics of radiation from a microstrip antenna on a substrate made of a chiral Metamaterial. Radiophysics and Quantum Electronics, 61(6), 445–455.

    Article  Google Scholar 

  32. Epstein, A., & Eleftheriades, G. V. (2016). Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Physical Review Letters, 117, 256103.

    Article  Google Scholar 

  33. Epstein, A., & Eleftheriades, G. V. (2017). Arbitrary antenna arrays without feed networks based on cavity-excited omega-bianisotropic metasurfaces. IEEE Transactions on Antennas and Propagation, 65, 1749–1756.

    Article  MathSciNet  Google Scholar 

  34. Pandey, A. (2019). Practical microstrip and printed antenna design. Artech House.

    Google Scholar 

  35. Bouknia, M. L., Zebiri, C., Sayad, D., Elfergani, I., Rodriguez, J., Alibakhshikenari, M., Abd-Alhameed, R. A., Falcone, F., & Limiti, E. (2021). Theoretical study of the input impedance and electromagnetic field distribution of a dipole antenna printed on an electrical/magnetic uniaxial anisotropic substrate”. Electronics, 10(9), 1050.

    Article  Google Scholar 

  36. Braaten, B. D., Rogers D. A., and Nelson R. M., (2009) Current distribution of a printed dipole with arbitrary length embedded in layered uniaxial anisotropic dielectrics,” In: Proceedings of the 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Belem, Brazil, 3–6 November 2009; pp. 72–77.

  37. Braaten, B. D., Rogers, D. A., & Nelson, R. M. (2012). Multi-conductor spectral domain analysis of the mutual coupling between printed dipoles embedded in stratified uniaxial anisotropic dielectrics”. IEEE transactions on antennas and propagation, 60(4), 1886–1898.

    Article  MathSciNet  Google Scholar 

  38. Braaten, B. D., Nelson, R. M., & Rogers, D. A. (2009). Input impedance and resonant frequency of a printed dipole with arbitrary length embedded in stratified uniaxial anisotropic dielectrics”. IEEE Antennas and Wireless Propagation Letters, 8, 806–810.

    Article  Google Scholar 

  39. Bouknia, M. L., Zebiri, C., Sayad, D., Elfergani, I., Alibakhshikenari, M., Rodriguez, J., Abd-Alhameed, R. A., Falcone, F., & Limiti, E. (2021). Analysis of the combinatory effect of uniaxial electrical and magnetic anisotropy on the input impedance and mutual coupling of a printed dipole antenna”. IEEE Access, 9, 84910–84921.

    Article  Google Scholar 

  40. Sayad, D., Benabdelaziz, F., Zebiri, C., Daoudi, S., & Abd-Alhameed, A. A. (2016). Spectral domain analysis of gyrotropic anisotropy chiral effect on the input impedance of a printed dipole antenna”. Progress In Electromagnetics Research M, 51, 1–8.

    Article  Google Scholar 

  41. Davidson, D. B., & Aberle, J. T. (2004). An introduction to spectral domain method-of-moments formulations”. IEEE Antennas and propagation Magazine, 46(3), 11–19.

    Article  Google Scholar 

  42. Kamenetskii, E. O., Sigalov M., and Shavit R., (2008) Do the Tellegen particles really exist in electromagnetics? arXiv preprint arXiv:0807.4280.

  43. Tretyakov, S. A., Maslovski, S. I., Nefedov, I. S., Viitanen, A. J., Belov, P. A., & Sanmartin, A. (2003). Artificial tellegen particle”. Electromagnetics, 23(8), 665–680.

    Article  Google Scholar 

  44. Honglei, W., Kunde, Y., & Kun, Z. (2015). Performance of dipole antenna in underwater wireless sensor communication”. IEEE Sensors Journal, 15(11), 6354–6359.

    Article  Google Scholar 

  45. Zebiri, C., Daoudi, S., Benabdelaziz, F., Lashab, M., Sayad, D., Nazar, A., & Abd-Alhameed, R. A. (2016). Gyro-chirality effect of bianisotropic substrate on the operational of rectangular microstrip patch antenna”. International Journal of Applied Electromagnetics and Mechanics, 51(3), 249–260.

    Article  Google Scholar 

  46. Young, J. C., and Gedney S. D., (2015) A delta gap source for locally corrected Nyström discretized integral equations. In 2015 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting pp. 965–966.

  47. Rana, I., & Alexopoulos, N. (1981). Current distribution and input impedance of printed dipoles. IEEE Transactions on Antennas and Propagation, 29(1), 99–105.

    Article  Google Scholar 

  48. MATLAB, version. (2018). The mathworks Inc: Natick (p. 2018). MA.

    Google Scholar 

Download references

Acknowledgements

This project received funding in part from the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), MESRS (Ministry of Higher Education and Scientific Research), Algeria. This work is supported by the Moore4Medical project, funded within ECSEL JU in collaboration with the EU H2020 Framework Programme (H2020/2014-2020) under grant agreement H2020-ECSEL-2019-IA-876190, and Fundação para a Ciência e Tecnologia (ECSEL/0006/2019). This work is also funded by the FCT/MEC through national funds and when applicable co-financed by the ERDF, under the PT2020 Partnership Agreement under the UID/EEA/50008/2020 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preecha Yupapin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zebiri, C., Bouknia, M.L., Sayad, D. et al. Negative input impedance of a dipole antenna printed on a grounded tellegen metamaterial substrate. Wireless Netw 28, 2237–2254 (2022). https://doi.org/10.1007/s11276-022-02962-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02962-6

Keywords

Navigation