Skip to main content
Log in

An improved retransmission timeout prediction algorithm for enhancing data transmission on internet of vehicles network

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The internet of vehicles (IoV) paradigm remains the future of vehicular communication that supports unparalleled ubiquitous internet access during vehicular mobility. For reliable end-to-end data transfer, the cumbersome volume of global web traffic relies on transmission control protocol and its retransmission timeout (RTO) timer prediction algorithm. In the IoV network, the RTO estimation fails to withstand a sudden increase in roundtrip time (RTT) delays that lead to a spurious timeout condition and needless deflation in transmission rate. The enhanced learning RTO (EL-RTO) algorithm proposed in this article implements a spike suppression variable that minimize RTO prediction deficiency during sudden RTT delays in the vehicular network. The experimental results manifest that EL-RTO attains a considerable improvement in end-to-end data delivery performance, goodput, and message latency performances with minimum estimation error against the existing RTO approaches under the simulated IoV environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability statement

The datasets analyzed during the current study are not publicly available, compromising our future research programs. Still, they are available from the corresponding author on reasonable request.

References

  1. Guidoni, D. L., Maia, G., Souza, F. S., Villas, L. A., & Loureiro, A. A. (2020). Vehicular traffic management based on traffic engineering for vehicular ad hoc networks. IEEE Access, 8, 45167–45183. https://doi.org/10.1109/ACCESS.2020.2978700

    Article  Google Scholar 

  2. Afaq, M., Iqbal, J., Ahmed, T., Islam, I. U., Khan, M., & Khan, M. S. (2020). Towards 5G network slicing for vehicular ad-hoc networks: An end-to-end approach. Computer Communications, 149, 252–258. https://doi.org/10.1016/j.comcom.2019.10.018

    Article  Google Scholar 

  3. Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for vehicular ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31. https://doi.org/10.1016/j.vehcom.2018.01.006

    Article  Google Scholar 

  4. Boualouache, A., Senouci, S. M., & Moussaoui, S. (2017). A survey on pseudonym changing strategies for vehicular ad-hoc networks. IEEE Communications Surveys and Tutorials, 20(1), 770–790. https://doi.org/10.1109/COMST.2017.2771522

    Article  Google Scholar 

  5. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241. https://doi.org/10.1007/s11235-010-9400-5

    Article  Google Scholar 

  6. Joe, M. M., & Ramakrishnan, B. (2016). Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wireless Networks, 22(7), 2369–2386. https://doi.org/10.1007/s11276-015-1104-z

    Article  Google Scholar 

  7. Contreras-Castillo, J., Zeadally, S., & Guerrero-Ibañez, J. A. (2017). Internet of vehicles: Architecture, protocols, and security. IEEE Internet of Things Journal, 5(5), 3701–3709. https://doi.org/10.1109/JIOT.2017.2690902

    Article  Google Scholar 

  8. Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C. T., & Liu, X. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4, 5356–5373. https://doi.org/10.1109/ACCESS.2016.2603219

    Article  Google Scholar 

  9. Nanda, A., Puthal, D., Rodrigues, J. J., & Kozlov, S. A. (2019). Internet of autonomous vehicles communications security: Overview, issues, and directions. IEEE Wireless Communications, 26(4), 60–65. https://doi.org/10.1109/MWC.2019.1800503

    Article  Google Scholar 

  10. Thakur, A., & Malekian, R. (2019). Internet of vehicles communication technologies for traffic management and road safety applications. Wireless Personal Communications, 109(1), 31–49. https://doi.org/10.1007/s11277-019-06548-y

    Article  Google Scholar 

  11. Sharma, S., & Kaul, A. (2020). VANETs cloud: Architecture, applications, challenges, and issues. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-020-09447-9

    Article  Google Scholar 

  12. Soni, N., Malekian, R., Andriukaitis, D., & Navikas, D. (2019). Internet of vehicles based approach for road safety applications using sensor technologies. Wireless Personal Communications, 105(4), 1257–1284. https://doi.org/10.1007/s11277-019-06144-0

    Article  Google Scholar 

  13. Thakur, A., & Malekian, R. (2019). Fog computing for detecting vehicular congestion, an internet of vehicles based approach: A review. IEEE Intelligent Transportation Systems Magazine, 11(2), 8–16. https://doi.org/10.1109/MITS.2019.2903551

    Article  Google Scholar 

  14. Tonguz, O. K., & Zhang, R. (2019). Harnessing vehicular broadcast communications: Dsrc-actuated traffic control. IEEE Transactions on Intelligent Transportation Systems, 21(2), 509–520. https://doi.org/10.1109/TITS.2019.2901285

    Article  Google Scholar 

  15. Vershinin, Y. A., & Zhan, Y. (2020). Vehicle to vehicle communication: Dedicated short range communication and safety awareness. IEEE Conference on Systems of Signals Generating and Processing in the Field of on Board Communications. https://doi.org/10.1109/IEEECONF48371.2020.9078660

    Article  Google Scholar 

  16. Arena, F., Pau, G., & Severino, A. (2020). A review on IEEE 802.11 p for intelligent transportation systems. Journal of Sensor and Actuator Networks, 9(2), 22. https://doi.org/10.3390/jsan9020022

    Article  Google Scholar 

  17. Allman, M., Paxson, V., & Blanton, E. (2009). RFC 5681: TCP Congestion Control. Retrieved November 14, 2021, from https://tools.ietf.org/html/rfc5681

  18. Na, W., Lakew, D. S., Lee, J., & Cho, S. (2019). Congestion control vs. link failure: TCP behavior in mmWave connected vehicular networks. Future Generation Computer Systems, 101, 1213–1222. https://doi.org/10.1016/j.future.2019.07.065

    Article  Google Scholar 

  19. Molia, H. K., & Kothari, A. D. (2018). TCP variants for mobile adhoc networks: Challenges and solutions. Wireless Personal Communications, 100(4), 1791–1836. https://doi.org/10.1007/s11277-018-5675-8

    Article  Google Scholar 

  20. SreeArthi, D., Malini, S., Jude, M. J. A., & Diniesh, V. C. (2017). Micro level analysis of TCP congestion control algorithm in multi-hop wireless networks. IEEE Conference on Computer Communication and Informatics (ICCCI). https://doi.org/10.1109/ICCCI.2017.8117765

    Article  Google Scholar 

  21. Malini, S., SreeArthi, D., Jude, M. J. A., & Diniesh, V. C. (2017). Impact of retransmission timeout (RTO) algorithm on TCP’s performance under multi-hop wireless networks. IEEE Conference on Computer Communication and Informatics (ICCCI). https://doi.org/10.1109/ICCCI.2017.8117762

    Article  Google Scholar 

  22. Paxson, V., Allman, M., Chu, J., & Sargent, M. (2011). RFC 6298: Computing TCP’s Retransmission Timer. Retrieved November 14, 2021, from https://tools.ietf.org/html/rfc6298

  23. El-Bazzal, Z., Ahmad, A. M., Houssini, M., El Bitar, I., & Rahal, Z. (2018). Improving the performance of TCP over wireless networks. In IEEE conference on digital information, networking, and wireless communications (DINWC) (pp. 12–17). https://doi.org/10.1109/DINWC.2018.8356988

  24. Janowski, R., Grabowski, M., & Arabas, P. (2019). New heuristics for TCP retransmission timers. In International conference on computer recognition systems (pp. 117–129). Springer. https://doi.org/10.1007/978-3-030-19738-4_13

  25. Xu, Y., Yao, S., Wang, C., & Xu, J. (2017). CO-RTO: Achieving efficient data retransmission in VNDN by correlations implied in names. IEEE Conference on Computer Communications Workshops. https://doi.org/10.1109/INFCOMW.2017.8116404

    Article  Google Scholar 

  26. Yang, G., Wang, R., Sabbagh, A., Zhao, K., & Zhang, X. (2018). Modeling optimal retransmission timeout interval for bundle protocol. IEEE Transactions on Aerospace and Electronic Systems, 54(5), 2493–2508. https://doi.org/10.1109/TAES.2018.2820398

    Article  Google Scholar 

  27. Wang, R., Qiu, M., Zhao, K., & Qian, Y. (2016). Optimal RTO timer for best transmission efficiency of DTN protocol in deep-space vehicle communications. IEEE Transactions on Vehicular Technology, 66(3), 2536–2550. https://doi.org/10.1109/TVT.2016.2572079

    Article  Google Scholar 

  28. Shin, S., Han, D., Cho, H., Chung, J. M., Hwang, I., & Ok, D. (2016). TCP and MPTCP retransmission timeout control for networks supporting WLANs. IEEE Communications Letters, 20(5), 994–997.

    Article  Google Scholar 

  29. Nunes, B. A. A., Veenstra, K., Ballenthin, W., Lukin, S., & Obraczka, K. (2014). A machine learning framework for TCP round-trip time estimation. EURASIP Journal on Wireless Communications and Networking, 2014(1), 1–22. https://doi.org/10.1186/1687-1499-2014-47

    Article  Google Scholar 

  30. Joseph Auxilius Jude, M., Diniesh, V. C., Aarthi, D., & Abirami, S. (2022). Wireless retransmission timeout algorithm for multi-hop vehicular network. Internet Technology Letters, 3, 68. https://doi.org/10.1002/itl2.368

    Article  Google Scholar 

  31. The Network Simulator-3. Retrieved November 14, 2021, from https://www.nsnam.org/

  32. SUMO (Simulation of Urban MObility). Retrieved November 14, 2021, from https://www.eclipse.org/sumo/

  33. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6: Wireless Access in Vehicular Environments IEEE Std. 802.11p, Jun. 2010. Retrieved November 14, 2021, from https://ieeexplore.ieee.org/document/5514475

  34. Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., & Scheffenegger, R. (2009). RFC 8312: CUBIC for fast long-distance networks. Retrieved November 14, 2021, from https://tools.ietf.org/html/rfc8312

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joseph Auxilius Jude.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jude, M.J.A., Malini, S., Diniesh, V.C. et al. An improved retransmission timeout prediction algorithm for enhancing data transmission on internet of vehicles network. Wireless Netw 28, 2421–2436 (2022). https://doi.org/10.1007/s11276-022-02972-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02972-4

Keywords

Navigation