Skip to main content

Advertisement

Log in

Joint deployment and sleep scheduling of the Internet of things

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The Internet of things (IoT) provides an infrastructure to constructing smart cities. Through the installed IoT sensors in the city, a large amount of information of the city is detected and collected in a cloud center, which provides residents to have immediate and convenient services. To achieve the goal of smart cities, the fundamental challenge has been to minimize the energy consumption of the IoT sensor network, which is involved with the deployment and sleep scheduling of IoT sensors. Most of the previous related works proposed two-stage approaches to address deployment and sleep scheduling problems of IoT sensors separately. However, the deployment at the first stage influences the optimality of the sleep scheduling at the second stage significantly. Consequently, this work jointly considers deployment and sleep scheduling of IoT sensors in a smart city. To improve the performance of sleep scheduling of IoT sensors, the deployment at the first stage concurrently considers a part of the optimality of later sleep scheduling, and it is optimized by the proposed improved geometric selective harmony search algorithm that incorporates crossover and dynamic schemes. The crossover scheme can effectively solve the problem of different decision variables in the solution representation; and the dynamic scheme can increase stability and diversity of searching for solutions. The performance of the proposed algorithm is evaluated by the simulation under various combinations of covering requirements, the number of sensors, and practical parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luo, C., Hong, Y., Li, D., Wang, Y., Chen, W., & Hu, Q. (2020). Maximizing network lifetime using coverage sets scheduling in wireless sensor networks. Ad Hoc Networks, 98, 102037.

    Article  Google Scholar 

  2. Lu, W., Gong, Y., Liu, X., Wu, J., & Peng, H. (2018). Collaborative energy and information transfer in green wireless sensor networks for smart cities. IEEE Transactions on Industrial Informatics, 14(4), 1585–1593.

    Article  Google Scholar 

  3. Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B.-G., & Gupta, B. B. (2018). An efficient algorithm for media-based surveillance system (EAMSuS) in IoT smart city framework. Future Generation Computer Systems, 83, 619–628.

    Article  Google Scholar 

  4. Meenaakshi Sundhari, R. P., & Jaikumar, K. (2020). IoT assisted hierarchical computation strategic making (HCSM) and dynamic stochastic optimization technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring. Computer Communications, 150, 226–234.

    Article  Google Scholar 

  5. Jovanovska, E. M., & Davcev, D. (2020). No pollution smart city sightseeing based on WSN monitoring system. In Proc. of 2020 Sixth International Conference on Mobile and Secure Services (MobiSecServ), pp. 1–6.

  6. Rout, R. R., Vemireddy, S., Raul, S. K., & Somayajulu, D. V. L. N. (2020). Fuzzy logic-based emergency vehicle routing: An IoT system development for smart city applications. Computers & Electrical Engineering, 88, 106839.

    Article  Google Scholar 

  7. Kelly, S. D. T., Suryadevara, N. K., & Mukhopadhyay, S. C. (2013). Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sensors Journal, 13(10), 3846–3853.

    Article  Google Scholar 

  8. Tewari, A., & Gupta, B. B. (2020). Security, privacy and trust of different layers in Internet-of-things (IoTs) framework. Future Generation Computer Systems, 108, 909–920.

    Article  Google Scholar 

  9. Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735.

    Article  Google Scholar 

  10. Montrucchio, B., Giusto, E., Vakili, M. G., Quer, S., Ferrero, R., & Fornaro, C. (2020). A densely-deployed, high sampling rate, open-source air pollution monitoring WSN. IEEE Transactions on Vehicular Technology, 69(12), 15786–15799.

    Article  Google Scholar 

  11. Onasanya, A., Lakkis, S., & Elshakankiri, M. J. W. N. (2019). Implementing IoT/WSN based smart Saskatchewan healthcare system. Wireless Networks, 25(7), 3999–4020.

    Article  Google Scholar 

  12. Onasanya, A., & Elshakankiri, M. (2021). Smart integrated IoT healthcare system for cancer care. Wireless Networks, 27(6), 4297–4312.

    Article  Google Scholar 

  13. Kumar, K. A., Krishna, A. V. N., & Chatrapati, K. S. (2017). New secure routing protocol with elliptic curve cryptography for military heterogeneous wireless sensor networks. Journal of Information and Optimization Sciences, 38(2), 341–365.

    Article  Google Scholar 

  14. Thomas, D., Shankaran, R., Orgun, M., Hitchens, M., & Ni, W. (2019). Energy-efficient military surveillance: coverage meets connectivity. IEEE Sensors Journal, 19(10), 3902–3911.

    Article  Google Scholar 

  15. Kawamoto, Y., Nishiyama, H., Fadlullah, Z. M., & Kato, N. (2013). Effective data collection via satellite-routed sensor system (SRSS) to realize global-scaled Internet of things. IEEE Sensors Journal, 13(10), 3645–3654.

    Article  Google Scholar 

  16. Godoi Vieira, R., da Cunha, A. M., Ruiz, L. B., & de Camargo, A. P. (2018). On the design of a long range WSN for precision irrigation. IEEE Sensors Journal, 18(2), 773–780.

    Article  Google Scholar 

  17. Pal, A., & Jolfaei, A. (2020). On the lifetime of asynchronous software-defined wireless sensor networks. IEEE Internet of Things Journal, 7(7), 6069–6077.

    Article  Google Scholar 

  18. Kuo, Y., Li, C., Jhang, J., & Lin, S. (2018). Design of a wireless sensor network-based IoT platform for wide area and heterogeneous applications. IEEE Sensors Journal, 18(12), 5187–5197.

    Article  Google Scholar 

  19. Huang, J., Meng, Y., Gong, X., Liu, Y., & Duan, Q. (2014). A novel deployment scheme for green Internet of things. IEEE Internet of Things Journal, 1(2), 196–205.

    Article  Google Scholar 

  20. Lin, C.-C., Deng, D.-J., & Wang, S.-B. (2016). Extending the lifetime of dynamic underwater acoustic sensor networks using multi-population harmony search algorithm. IEEE Sensors Journal, 16(11), 4034–4042.

    Article  Google Scholar 

  21. Estrada-López, J. J., Castillo-Atoche, A. A., Vázquez-Castillo, J., & Sánchez-Sinencio, E. (2018). Smart soil parameters estimation system using an autonomous wireless sensor network with dynamic power management strategy. IEEE Sensors Journal, 18(21), 8913–8923.

    Article  Google Scholar 

  22. Sharma, H., Haque, A., & Jaffery, Z. A. (2019). Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring. Ad Hoc Networks, 94, 101966.

    Article  Google Scholar 

  23. Krishnan, M., Rajagopal, V., & Rathinasamy, S. (2018). Performance evaluation of sensor deployment using optimization techniques and scheduling approach for K-coverage in WSNs. Wireless Networks, 24(3), 683–693.

    Article  Google Scholar 

  24. Hu, J., Luo, J., Zheng, Y., & Li, K. (2019). Graphene-grid deployment in energy harvesting cooperative wireless sensor networks for green IoT. IEEE Transactions on Industrial Informatics, 15(3), 1820–1829.

    Article  Google Scholar 

  25. Cetinkaya, O., & Merrett, G. V. (2020). Efficient deployment of UAV-powered sensors for optimal coverage and connectivity. In Proc. of 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6.

  26. Oladimeji, M. O., Turkey, M., & Dudley, S. (2017). HACH: Heuristic algorithm for clustering hierarchy protocol in wireless sensor networks. Applied Soft Computing, 55, 452–461.

    Article  Google Scholar 

  27. Mukherjee, M., Shu, L., Hu, L., Hancke, G. P., & Zhu, C. (2017). Sleep scheduling in industrial wireless sensor networks for toxic gas monitoring. IEEE Wireless Communications, 24(4), 106–112.

    Article  Google Scholar 

  28. Mini, S., Udgata, S. K., & Sabat, S. L. (2013). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.

    Article  Google Scholar 

  29. Gu, Y., Zhao, B.-H., Ji, Y.-S., & Li, J. (2011). Theoretical treatment of target coverage in wireless sensor networks. Journal of Computer Science and Technology, 26(1), 117–129.

    Article  Google Scholar 

  30. Castelli, M., Silva, S., Manzoni, L., & Vanneschi, L. (2014). Geometric selective harmony search. Information Sciences, 279, 468–482.

    Article  MathSciNet  Google Scholar 

  31. Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2), 1567–1579.

    Article  MathSciNet  Google Scholar 

  32. Kim, H., & Han, S.-W. (2014). An efficient sensor deployment scheme for large-scale wireless sensor networks. IEEE Communications Magazine, 19(1), 98–101.

    Google Scholar 

  33. Hanh, N. T., Binh, H. T. T., Hoai, N. X., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.

    Article  MathSciNet  Google Scholar 

  34. Shah, B., et al. (2020). Guaranteed lifetime protocol for IoT based wireless sensor networks with multiple constraints. Ad Hoc Networks, 104, 102158.

    Article  Google Scholar 

  35. Mini, S., Udgata, S. K., & Sabat, S. L. (2010). Sensor deployment in 3-D terrain using artificial bee colony algorithm. In Proc. of 1st International Conference on Swarm, Evolutionary, and Memetic Computing (SEMCCO 2010), vol. 6466 of Lecture Notes in Computer Science, pp. 424–431.

  36. Udgata, S. K., Sabat, S. L., & Mini, S. (2009). Sensor deployment in irregular terrain using artificial bee colony algorithm. In Proc. of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), IEEE Press, pp. 1309–1314.

  37. Mini, S., Udgata, S. K., & Sabat, S. L. (2011). A heuristic to maximize network lifetime for target coverage problem in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 13(3–4), 251–269.

    Google Scholar 

  38. Lin, C.-C., Deng, D.-J., Chen, Z.-Y., & Chen, K.-C. (2016). Key design of driving Industry 4.0: Joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks. IEEE Communications Magazine, 54(10), 46–52.

    Article  Google Scholar 

  39. Geem, Z. W., & Kim, J. H. (2001). A new heuristic optimization algorithm: Harmony search. SIMULATION, 76, 60–68.

    Article  Google Scholar 

  40. Sudevalayam, S., & Kulkarni, P. (2010). Energy harvesting sensor nodes: Survey and implications. In Proc. of IEEE Communications Surveys & Tutorials (CST 2010), 3(3) 1–19.

Download references

Acknowledgements

This work has been supported in part by the Ministry of Science and Technology, Taiwan, under Grants MOST 109-2221-E-009-068-MY3, MOST 108-2628-E-009-008-MY3, and MOST 110-2622-E-A49-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Cheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Peng, YC., Chang, LW. et al. Joint deployment and sleep scheduling of the Internet of things. Wireless Netw 28, 2471–2483 (2022). https://doi.org/10.1007/s11276-022-02981-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02981-3

Keywords

Navigation