Skip to main content

Advertisement

Log in

EDGO: UAV-based effective data gathering scheme for wireless sensor networks with obstacles

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

One of the most important requirements for effective UAV–WSN operations is to perform data collection in timely and safe manner. Identifying an effective path in an environment with various obstacles and ensuring that the path may efficiently cover the selected stop points for effective data collection are both necessary and difficult. We propose a UAV-based effective data gathering scheme for wireless sensor networks with obstacles, where a UAV is employed as a mobile sink to collect data from the ground sensor nodes (EDGO). The main novelty includes a UAV–WSN collaborative approach for data gathering, which incorporates a convenient method for UAV trajectory design in a three-dimensional environment with obstacles. We propose an improved heuristic evolutionary approach based on genetic algorithm to determine the optimized trajectory for the UAV to gather data. In contrast to existing methods, the proposed method focus to reduce the length and angle cost of the path, minimize the energy consumption, and delay, and includes different evolutionary operations to generate a collision free path for UAV. Our approach retains the infeasible path through sufficient modifications, which improves the diversity of paths, so that it is possible to jump out of the local optima. The results reveal the effectiveness of the EDGO scheme against the other related approaches in terms of path cost and data collection efficiency. The network lifetime is extended by approximately 11% and offers a reduction of 42% and 35% in the UAV path length and travel time, respectively, when compared to the existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hanif, S., Khedr, A. M., Al Aghbari, Z., & Agrawal, D. P. (2018). Opportunistically exploiting internet of things for wireless sensor network routing in smart cities. Journal of Sensor and Actuator Networks, 7(4), 46.

    Article  Google Scholar 

  2. Popescu, D., Stoican, F., Stamatescu, G., Ichim, L., & Dragana, C. (2020). Advanced UAV–WSN system for intelligent monitoring in precision agriculture. Sensors, 20(3), 817.

    Article  Google Scholar 

  3. Popescu, D., Stoican, F., Stamatescu, G., Chenaru, O., & Ichim, L. (2019). A survey of collaborative UAV–WSN systems for efficient monitoring. Sensors, 19(21), 4690.

    Article  Google Scholar 

  4. Yang, X., Fu, S., Wu, B. & Zhang, M. (2020). A survey of key issues in UAV data collection in the internet of things. In 2020 IEEE intl conf (DASC/PiCom/CBDCom/CyberSciTech), pp. 410–413, IEEE.

  5. Alzahrani, B., Oubbati, O. S., Barnawi, A., Atiquzzaman, M., & Alghazzawi, D. (2020). Uav assistance paradigm: State-of-the-art in applications and challenges. Journal of Network and Computer Applications, 166, 102706.

    Article  Google Scholar 

  6. Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangash, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors, 14(2), 2510–2548.

    Article  Google Scholar 

  7. Osamy, W., El-sawy, A. A., & Khedr, A. M. (2019). Satc: A simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networks. Wireless Personal Communications, 108(2), 921–938.

    Article  Google Scholar 

  8. Khedr, A. M. (2008). Learning k-nearest neighbors classifier from distributed data. Computing and Informatics, 27(3), 355–376.

    MathSciNet  MATH  Google Scholar 

  9. Khedr, A. M., & Bhatnagar, R. (2007). Agents for integrating distributed data for complex computations. Computing and Informatics, 26(2), 149–170.

    MATH  Google Scholar 

  10. Zhang, Q., Jiang, M., Feng, Z., Li, W., Zhang, W., & Pan, M. (2019). IOT enabled UAV: Network architecture and routing algorithm. IEEE Internet of Things Journal, 6(2), 3727–3742.

    Article  Google Scholar 

  11. Arafat, M. Y., Habib, M. A., & Moh, S. (2020). Routing protocols for UAV-aided wireless sensor networks. Applied Sciences, 10(12), 4077.

    Article  Google Scholar 

  12. Zhan, C., Zeng, Y., & Zhang, R. (2018). Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wireless Communications Letters, 7(3), 328–331.

    Article  Google Scholar 

  13. Omar, D. M., Khedr, A. M., & Agrawal, D. P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security, 9(3), 367–375.

    Google Scholar 

  14. Bouhamed, O., Ghazzai, H., Besbes, H., & Massoud, Y. (2020). A UAV-assisted data collection for wireless sensor networks: Autonomous navigation and scheduling. IEEE Access, 8, 110446–110460.

    Article  Google Scholar 

  15. Yue, W., & Jiang, Z. (2018). Path planning for UAV to collect sensors data based on spiral decomposition. Procedia Computer Science, 131, 873–879.

    Article  Google Scholar 

  16. Yang, Q., & Yoo, S.-J. (2018). Optimal UAV path planning: Sensing data acquisition over IOT sensor networks using multi-objective bio-inspired algorithms. IEEE Access, 6, 13671–13684.

    Article  Google Scholar 

  17. Baek, J., Han, S. I., & Han, Y. (2019). Energy-efficient UAV routing for wireless sensor networks. IEEE Transactions on Vehicular Technology, 69(2), 1741–1750.

    Article  Google Scholar 

  18. Chen, J., Li, M., Yuan, Z., & Gu, Q. (2020). An improved a* algorithm for UAV path planning problems. In 2020 IEEE 4th information technology, networking, electronic and automation control conference (ITNEC), Vol. 1, pp. 958–962. IEEE.

  19. Ho, D.-T., Grøtli, E. I., Sujit, P., Johansen, T. A., & Sousa, J. B. (2015). Optimization of wireless sensor network and UAV data acquisition. Journal of Intelligent & Robotic Systems, 78(1), 159–179.

    Article  Google Scholar 

  20. Tarighi, R., Farajzadeh, K., & Hematkhah, H. (2020). Prolong network lifetime and improve efficiency in WSN–UAV systems using new clustering parameters and CSMA modification. International Journal of Communication Systems, 33(7), e4324.

    Article  Google Scholar 

  21. Ghorbel, M. B., Rodríguez-Duarte, D., Ghazzai, H., Hossain, M. J., & Menouar, H. (2019). Joint position and travel path optimization for energy efficient wireless data gathering using unmanned aerial vehicles. IEEE Transactions on Vehicular Technology, 68(3), 2165–2175.

    Article  Google Scholar 

  22. Kashuba, S., Novikov, V., Lysenko, O., & Alekseeva, I. (2015). Optimization of UAV path for wireless sensor network data gathering. In 2015 IEEE international conference actual problems of unmanned aerial vehicles developments (APUAVD), pp. 280–283. IEEE.

  23. Cao, H.-R., Yang, Z., Yue, X.-J., & Liu, Y.-X. (2017). An optimization method to improve the performance of unmanned aerial vehicle wireless sensor networks. International Journal of Distributed Sensor Networks, 13(4), 1550147717705614.

    Article  Google Scholar 

  24. Dong, M., Ota, K., Lin, M., Tang, Z., Du, S., & Zhu, H. (2014). UAV-assisted data gathering in wireless sensor networks. The Journal of Supercomputing, 70(3), 1142–1155.

    Article  Google Scholar 

  25. Fadlullah, Z. M., Takaishi, D., Nishiyama, H., Kato, N., & Miura, R. (2016). A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks. IEEE Network, 30(1), 100–105.

    Article  Google Scholar 

  26. Xing, G., Li, M., Wang, T., Jia, W., & Huang, J. (2012). Efficient rendezvous algorithms for mobility-enabled wireless sensor networks. IEEE Transactions on Mobile Computing, 11(1), 47–60.

    Article  Google Scholar 

  27. Zhao, M., Yang, Y., & Wang, C. (2014). Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Transactions on Mobile Computing, 14(4), 770–785.

    Article  Google Scholar 

  28. Tazibt, C. Y., Bekhti, M., Djamah, T., Achir, N., & Boussetta, K. (2017). Wireless sensor network clustering for UAV-based data gathering. In 2017 wireless days, pp. 245–247. IEEE.

  29. Wang, C., Ma, F., Yan, J., De, D., & Das, S. K. (2015). Efficient aerial data collection with UAV in large-scale wireless sensor networks. International Journal of Distributed Sensor Networks, 11(11), 286080.

    Article  Google Scholar 

  30. Alemayehu, T. S., & Kim, J.-H. (2017). Efficient nearest neighbor heuristic tsp algorithms for reducing data acquisition latency of UAV relay WSN. Wireless Personal Communications, 95(3), 3271–3285.

    Article  Google Scholar 

  31. Jawhar, I., Mohamed, N.,& Al-Jaroodi, J. (2015). UAV-based data communication in wireless sensor networks: Models and strategies. In 2015 International conference on unmanned aircraft systems (ICUAS), pp. 687–694. IEEE.

  32. Zhang, X., & Duan, H. (2015). An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Applied Soft Computing, 26, 270–284.

    Article  Google Scholar 

  33. Dong, M., Ota, K., Liu, A., & Guo, M. (2015). Joint optimization of lifetime and transport delay under reliability constraint wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225–236.

    Article  Google Scholar 

  34. Liu, J., Wang, X., Bai, B., & Dai, H. (2018). Age-optimal trajectory planning for UAV-assisted data collection. In IEEE INFOCOM 2018-IEEE conference on computer communications workshops (INFOCOM WKSHPS), pp. 553–558. IEEE.

  35. Abdulla, A. E., Fadlullah, Z. M., Nishiyama, H., Kato, N., Ono, F., & Miura, R. (2014). An optimal data collection technique for improved utility in UAS-aided networks. In IEEE INFOCOM 2014-IEEE conference on computer communications, pp. 736–744. IEEE.

  36. Say, S., Inata, H., Liu, J., & Shimamoto, S. (2016). Priority-based data gathering framework in UAV-assisted wireless sensor networks. IEEE Sensors Journal, 16(14), 5785–5794.

    Article  Google Scholar 

  37. Martinez-de Dios, J. R., Lferd, K., de San Bernabé, A., Núnez, G., Torres-González, A., & Ollero, A. (2013). Cooperation between uas and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent & Robotic Systems, 70(1), 491–508.

    Google Scholar 

  38. Gong, J., Chang, T.-H., Shen, C., & Chen, X. (2018). Flight time minimization of UAV for data collection over wireless sensor networks. IEEE Journal on Selected Areas in Communications, 36(9), 1942–1954.

    Article  Google Scholar 

  39. Erdelj, M., Natalizio, E., Chowdhury, K. R., & Akyildiz, I. F. (2017). Help from the sky: Leveraging UAVS for disaster management. IEEE Pervasive Computing, 16(1), 24–32.

    Article  Google Scholar 

  40. Erdelj, M., Król, M., & Natalizio, E. (2017). Wireless sensor networks and multi-UAV systems for natural disaster management. Computer Networks, 124, 72–86.

    Article  Google Scholar 

  41. Albu-Salih, A. T., & Seno, S. A. H. (2018). Tour time minimization for multiple UAV in deadline based WSN applications. Journal of Theoretical & Applied Information Technology, 96(17), 5781–5802.

    Google Scholar 

  42. Chen, J., Du, C., Xie, F., & Lin, B. (2018). Scheduling non-preemptive tasks with strict periods in multi-core real-time systems. Journal of Systems Architecture, 90, 72–84.

    Article  Google Scholar 

  43. Ji, X., Meng, X., Wang, A., Hua, Q., Wang, F., Chen, R., et al. (2020). E2 pp: An energy-efficient path planning method for UAV-assisted data collection. Security and Communication Networks, 2020, 1–13.

    Article  Google Scholar 

  44. Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.

    Article  Google Scholar 

  45. Vinogradov, E., Sallouha, H., Bast, S. D., Azari, M., & Pollin, S. (2018). Tutorial on UAV: A blue sky view on wireless communication. Journal of Mobile Multimedia, 14, 395–468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Pravija Raj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravija Raj, P.V., Khedr, A.M. & Al Aghbari, Z. EDGO: UAV-based effective data gathering scheme for wireless sensor networks with obstacles. Wireless Netw 28, 2499–2518 (2022). https://doi.org/10.1007/s11276-022-02983-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02983-1

Keywords

Navigation