Skip to main content

Advertisement

Log in

A novel approach to fairness-aware energy efficiency in green heterogeneous cellular networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Heterogeneous cellular networks are a viable solution in response to the growing demand for broadband services in the new-generation wireless networks. The dense deployment of small cell networks is a key feature of next-generation heterogeneous networks aimed at providing the necessary capacity increase. However, the approach to apply green networks is very important especially in the downlink because uncontrolled deployment of too many small-cells may increase operational costs and emit more carbon dioxide. In addition, given the novel services and resource limitation of the user layer, energy efficiency and fairness assurance are critical issues in the uplink. Considering the uplink fairness criterion, this paper proposes a dynamic optimization model which maximizes the total uplink/downlink energy efficiency in addition to providing the essential coverage and capacity of heterogeneous cellular networks. Based on the non-convex characteristics of the energy efficiency maximization model, the mathematical model can be formulated to two subproblems, i.e., resource optimization and user association. So that, a subgradient method is applied for fair resource management and also successive convex approximation and dual decomposition methods are adopted to solve the proportional fairness problem. The simulation results exhibit considerable throughput increase by 30% and 22% on average for random and hotspot user distributions, respectively. It also proved that the proposed approach managed to significantly improve the total network energy efficiency by up to 35%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yenihayat, G., & Karaşan, E. (2020). Downlink data rate, energy and spectral efficiency distribution in heterogeneous networks with cell-edge located small cells. Wireless Networks, 26(4), 2595–2608.

    Article  Google Scholar 

  2. Mishra, S., & Murthy, C. (2018). Efficient coverage management of pico cells in HetNets via spectrum slicing, cell biasing, and transmit power spreading. Wireless Networks, 24(8), 3099–3112.

    Article  Google Scholar 

  3. Kazi, B. U., & Wainer, G. A. (2019). Next generation wireless cellular networks: ultra-dense multi-tier and multi-cell cooperation perspective. Wireless Networks, 25(4), 2041–2064.

    Article  Google Scholar 

  4. Mohajer, A., Morteza, B., & Houman Z. (2016). QoSCM: QoS-aware coded multicast approach for wireless networks. KSII Transactions on Internet and Information Systems (TIIS), 10(12), 5191–5211.

  5. Chai, G., Wu, W., Yang, Q., Liu, R., Qin, M., & Kwak, K. S. (2021). Energy-efficient resource allocation for multi-RAT networks under time average QoS constraint. Wireless Networks, 27(1), 323–338.

    Article  Google Scholar 

  6. Rangisetti, A. K., & Sathya, V. (2020). QoS aware and fault tolerant handovers in software defined LTE networks. Wireless Networks, 26(6), 4249–4267.

    Article  Google Scholar 

  7. Zhu, Y., Zheng, G., Wong, K.-K., Jin, S., & Lambotharan, S. (2018). Performance analysis of cache-enabled millimeter wave small cell networks. IEEE Transactions on Vehicular Technology, 67(7), 6695–6699.

    Article  Google Scholar 

  8. Ma, Z., Li, Bo., Yan, Z., & Yang, M. (2019). Remaining bandwidth based multipath routing in 5G millimeter wave self-backhauling network. Wireless Networks, 25(7), 3839–3855.

    Article  Google Scholar 

  9. Mohajer, A., Bavaghar, M., & Farrokhi, H. (2020). Mobility-aware load balancing for reliable self-organization networks: Multi-agent deep reinforcement learning. Reliability Engineering & System Safety, 202, 107056.

    Article  Google Scholar 

  10. Shuvo, M. S. A., Munna, M. A. R., Sarker, S., Adhikary, T., Razzaque, M. A., Hassan, M. M., Aloi, G., & Fortino, G. (2021). Energy-efficient scheduling of small cells in 5G: A meta-heuristic approach. Journal of Network and Computer Applications, 178, 102986.

    Article  Google Scholar 

  11. Ansere, J. A., Han, G., Liu, L., Peng, Y., & Kamal, M. (2020). Optimal resource allocation in energy-efficient Internet-of-Things networks with imperfect CSI. IEEE Internet of Things Journal, 7(6), 5401–5411.

    Article  Google Scholar 

  12. Li, H., Yang, S., Wen, Z., Cao, J., Luo, G., Wang, Z., & Wang, H. (2022). α-Fairness-based joint power allocation and power splitting for massive MIMO systems with SWIPT. Digital Signal Processing, 120, 103219.

    Article  Google Scholar 

  13. Goudos, S. K. (2019). Joint power allocation and user association in non-orthogonal multiple access networks: An evolutionary approach. Physical Communication, 37, 100841.

    Article  Google Scholar 

  14. Soleimani, B., & Sabbaghian, M. (2018). Cluster-based resource allocation and user association in mmWave femtocell networks. IEEE Transactions on Communications, 68(3), 1746–1759.

    Article  Google Scholar 

  15. Tran, H.-V., Kaddoum, G., & Truong, K. T. (2018). Resource allocation in SWIPT networks under a nonlinear energy harvesting model: Power efficiency, user fairness, and channel nonreciprocity. IEEE Transactions on Vehicular Technology, 67(9), 8466–8480.

    Article  Google Scholar 

  16. Li, X., Lan, X., Mirzaei, X., Aghdam, M. J. & I. E. E. E. Member. (2021) Reliability and robust resource allocation for cache-enabled HetNets: QoS-aware mobile edge computing. Reliability Engineering & System Safety 108272.

  17. Yin, W., Lei, Xu., Wang, H., Yang, Y., Wang, Y., & Chai, T. (2020). Resource management of video traffic over heterogeneous NOMA networks. IEEE Transactions on Circuits and Systems for Video Technology, 31(9), 3643–3654.

    Article  Google Scholar 

  18. Nikjoo, F., Mirzaei, A., & Mohajer, A. (2018). A novel approach to efficient resource allocation in NOMA heterogeneous networks: Multi-criteria green resource management. Applied Artificial Intelligence, 32(7–8), 583–612.

    Article  Google Scholar 

  19. Le, N.-T., Jayalath, D., & Coetzee, J. (2018). Spectral-efficient resource allocation for mixed services in OFDMA-based 5G heterogeneous networks. Transactions on Emerging Telecommunications Technologies, 29(1), e3267.

    Article  Google Scholar 

  20. Rahimi, P., Chrysostomou, C., Pervaiz, H., Vassiliou, V. & Ni, Q. (2021). dynamic resource allocation for SDN-based virtual Fog-RAN 5G-and-beyond networks. In 2021 IEEE Global Communications Conference (GLOBECOM) (pp. 01–06). IEEE

  21. Wang, X., Yongjun, Xu., Wang, J., & Shuang, Fu. (2020). Joint user association and power allocation in heterogeneous NOMA networks with imperfect CSI. IEEE Access, 8, 47607–47618.

    Article  Google Scholar 

  22. Tang, W., Zhang, R., Liu, Y., & Feng, S. (2014). Joint resource allocation for eICIC in heterogeneous networks. In 2014 IEEE Global Communications Conference (pp 2011–2016). IEEE

  23. Moltafet, M., Azmi, P., Mokari, N., Javan, M. R., & Mokdad, A. (2018). Optimal and fair energy efficient resource allocation for energy harvesting-enabled-PD-NOMA-based HetNets. IEEE Transactions on Wireless Communications, 17(3), 2054–2067.

    Article  Google Scholar 

  24. Li, B., Dai, Y., Dong, Z., Panayirci, E., Jiang, H., & Jiang, H. (2021). Energy-efficient resources allocation with millimeter-wave massive MIMO in ultra dense HetNets by SWIPT and CoMP. IEEE Transactions on Wireless Communications, 20(7), 4435–4451.

    Article  Google Scholar 

  25. Lai, J. Y., Wu-Hsiu, Wu., & Yu, TSu. (2020). Resource allocation and node placement in multi-hop heterogeneous integrated-access-and-backhaul networks. IEEE Access, 8, 122937–122958.

    Article  Google Scholar 

  26. Chaudhari, A., & Murthy, C. S. R. (2020). Efficient dynamic relay probing and concurrent backhaul link scheduling for mmWave cellular networks. Computer Communications, 149, 146–161.

    Article  Google Scholar 

  27. Javad-Kalbasi, M., & Valaee, S. (2021). Centralized and distributed algorithms for energy and spectrum efficient user association in small cell networks. IEEE Transactions on Green Communications and Networking, 5(4), 1781–1790.

    Article  Google Scholar 

  28. Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Jalali Rad, K., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and Backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal.

  29. Mohajer, A., Mazoochi, M., Niasar, F. A., Ghadikolayi, A. A. & Nabipour, M. (2013). Network coding-based QoS and security for dynamic interference-limited networks. In International Conference on Computer Networks (pp. 277–289). Springer: Berlin, Heidelberg.

  30. Akhtar, T., Tselios, C., & Politis, I. (2021). Radio resource management: Approaches and implementations from 4G to 5G and beyond. Wireless Networks, 27(1), 693–734.

    Article  Google Scholar 

  31. Temesgene, D. A., Miozzo, M., Gündüz, D., & Dini, P. (2020). Distributed deep reinforcement learning for functional split control in energy harvesting virtualized small cells. IEEE Transactions on Sustainable Computing, 6(4), 626–640.

    Article  Google Scholar 

  32. Bavaghar, M., Mohajer, A., & Motlagh, S. T. (2020). Energy efficient clustering algorithm for wireless sensor networks. Journal of Information Systems and Telecommunication (JIST), 4(28), 238.

    Google Scholar 

  33. Awad, M. K., Baidas, M. W., & Ahmad, A. (2021). Resource allocation for downlink non-orthogonal multiple access in joint transmission coordinated multi-point networks. Computer Communications, 173, 134–149.

    Article  Google Scholar 

  34. Wang, J., Song, X., Dong, L., Han, X. (2021). Power allocation for D2D aided cooperative NOMA system with imperfect CSI. Wireless Networks 1–14.

  35. Mohajer, A., Barari, M., & Zarrabi, H. (2016). Big data-based self optimization networking in multi carrier mobile networks. Bulletin de la Société Royale des Sciences de Liège, 85, 392–408.

    Article  Google Scholar 

  36. Mohajer, A., Yousefvand, M., Ghalenoo, E. N., Mirzaei, P., & Zamani, A. (2014). Novel approach to sub-graph selection over coded wireless networks with QoS constraints. IETE Journal of Research, 60(3), 203–210.

    Article  Google Scholar 

  37. 3GPP TS 36.52–1, 2018. Evolved Universal Terrestrial Radio Access (EUTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing. ETSI, pp. 1–130.

  38. Hsieh, C.-K., Chan, K.-L., & Chien, F.-T. (2021). Energy-efficient power allocation and user association in heterogeneous networks with deep reinforcement learning. Applied Sciences, 11(9), 4135.

    Article  Google Scholar 

  39. Xu, B., Chen, Y., Carrión, J. R., & Zhang, T. (2017). Resource allocation in energy-cooperation enabled two-tier NOMA HetNets toward green 5G. IEEE Journal on Selected Areas in Communications, 35(12), 2758–2770.

    Article  Google Scholar 

  40. Di, B., Song, L., & Li, Y. (2016). Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks. IEEE Transactions on Wireless Communications, 15(11), 7686–7698.

    Article  Google Scholar 

  41. Chege, S., & Walingo, T. (2021). Energy efficient resource allocation for uplink hybrid power domain sparse code nonorthogonal multiple access heterogeneous networks with statistical channel estimation. Transactions on Emerging Telecommunications Technologies, 32(1), e4185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Reza Momen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niasar, F.A., Momen, A.R. & Hosseini, S.A. A novel approach to fairness-aware energy efficiency in green heterogeneous cellular networks. Wireless Netw 28, 2651–2667 (2022). https://doi.org/10.1007/s11276-022-02987-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02987-x

Keywords

Navigation