Skip to main content

Advertisement

Log in

Machine/deep learning based estimation and detection in OFDM communication systems with various channel imperfections

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Orthogonal frequency division multiplexing (OFDM), one of the most dominant technology for fifth-generation (5G) wireless communication systems offers a high data rate with better spectrum efficiency. However, OFDM based systems suffer from various channel imperfections such as channel distortion, carrier frequency offset (CFO) due to transceiver local oscillator frequency mismatch, sampling frequency offset (SFO) between DAC/ADCs, nonlinear distortion (NLD) due to the nonlinear power amplifier, and fading caused by frequency selective channels. Recently OFDM based non-orthogonal multiple access (NOMA) scheme is attracting researchers’ attraction owing to its high spectral efficiency, massive connectivity, and resilience to frequency selectivity for the upcoming 5G wireless communication and beyond. However, NOMA-OFDM systems suffer the same demerits as OFDM-based systems to deploy such a multicarrier system for 5G and beyond applications. This paper studies the problem of various channel imperfections on OFDM and OFDM-NOMA systems and proposes machine learning (ML) based estimation and signal detection for OFDM and NOMA-OFDM based systems in presence of the aforementioned channel imperfections. Various ML models like neural network (NN), Recurrent-NN, long-short-term-memory are adopted in this research for channel estimation-equalization, CFO-SFO estimation and compensation and mitigation of NLD in OFDM and NOMA-OFDM receiver. Extensive simulation studies show that the ML-based techniques outperform traditional LS, MMSE-based methods for OFDM receiver, and LS-SIC, MMSE-SIC based methods for NOMA-OFDM receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim, Y.-H., & Lee, J.-H. (2011). Joint maximum likelihood estimation of carrier and sampling frequency offsets for OFDM systems. IEEE Transactions on Broadcasting, 57(2), 277–283. https://doi.org/10.1109/TBC.2011.2122890.

    Article  Google Scholar 

  2. Merchan, S., Armada, A. G., & Garcia, J. L. (1998). OFDM performance in amplifier nonlinearity. IEEE Transactions on Broadcasting, 44(1), 106–114. https://doi.org/10.1109/11.713060.

    Article  Google Scholar 

  3. Speth, M., Fechtel, S. A., Fock, G., & Meyr, H. (1999). Optimum receiver design for wireless broad-band systems using OFDM. I. IEEE Transactions on Communications, 47(11), 1668–1677. https://doi.org/10.1109/26.803501.

    Article  Google Scholar 

  4. Li, Y., Cimini, L. J., & Sollenberger, N. R. (1998). Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Transactions on Communications, 46(7), 902–915. https://doi.org/10.1109/26.701317.

    Article  Google Scholar 

  5. Nguyen-Le, H., Le-Ngoc, T., & Ko, C. C. (2009). RLS-based joint estimation and tracking of channel response, sampling, and carrier frequency offsets for OFDM. IEEE Transactions on Broadcasting, 55(1), 84–94. https://doi.org/10.1109/TBC.2008.2012361.

    Article  Google Scholar 

  6. Schmidl, T. M., & Cox, D. C. (1997). Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications, 45(12), 1613–1621. https://doi.org/10.1109/26.650240.

    Article  Google Scholar 

  7. Wang, X., & Hu, B. (2014). A low-complexity ml estimator for carrier and sampling frequency offsets in OFDM systems. IEEE Communications Letters, 18(3), 503–506. https://doi.org/10.1109/LCOMM.2013.123113.132444.

    Article  Google Scholar 

  8. Lv, T., Li, H., & Chen, J. (2005). Joint estimation of symbol timing and carrier frequency offset of OFDM signals over fast time-varying multipath channels. IEEE Transactions on Signal Processing, 53(12), 4526–4535. https://doi.org/10.1109/TSP.2005.859233.

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, X., & Hu, B. (2014). A low-complexity ml estimator for carrier and sampling frequency offsets in OFDM systems. IEEE Communications Letters, 18(3), 503–506. https://doi.org/10.1109/LCOMM.2013.123113.132444.

    Article  Google Scholar 

  10. Meng, Y., Zhang, W., Stüber, G. L., & Wang, W. (2020). Blind Fast CFO Estimation and Performance Analysis for OFDM. IEEE Transactions on Vehicular Technology, 69(10), 11501–11514. https://doi.org/10.1109/TVT.2020.3012968.

    Article  Google Scholar 

  11. Huang, D., & Letaief, K. B. (2005). An interference-cancellation scheme for carrier frequency offsets correction in OFDMA systems. IEEE Transactions on Communications, 53(7), 1155–1165. https://doi.org/10.1109/TCOMM.2005.851558.

    Article  Google Scholar 

  12. Balachander, T., & Krishnan, M. B. M. (2021). Carrier frequency offset (CFO) synchronization and peak average power ratio (PAPR) minimization for energy efficient cognitive radio network (CRN) for 5G wireless communication. Wireless Personal Communications no. 0123456789. https://doi.org/10.1007/s11277-021-08726-3.

  13. Thota, S., Kamatham, Y., & Paidimarry, C. S. (2020). Analysis of hybrid PAPR reduction methods of OFDM Signal for HPA models in wireless communications. IEEE Access, 8, 22780–22791. https://doi.org/10.1109/ACCESS.2020.2970022.

    Article  Google Scholar 

  14. Hilario-Tacuri, A., Maldonado, J., Revollo, M., & Chambi, H. (2021). Bit error rate analysis of NOMA-OFDM in 5G systems with non-linear HPA with memory. IEEE Access, 9, 83709–83717. https://doi.org/10.1109/ACCESS.2021.3087536.

    Article  Google Scholar 

  15. Singya, P. K., Kumar, N., & Bhatia, V. (2017). Mitigating NLD for wireless networks: effect of nonlinear power amplifiers on future wireless communication networks. IEEE Microwave Magazine, 18(5), 73–90. https://doi.org/10.1109/MMM.2017.2691423.

    Article  Google Scholar 

  16. Komatsu, K., Miyaji, Y., & Uehara, H. (2020). Iterative nonlinear self-interference cancellation for in-band full-duplex wireless communications under mixer imbalance and amplifier nonlinearity. IEEE Transactions on Wireless Communications, 19(7), 4424–4438. https://doi.org/10.1109/TWC.2020.2983407.

    Article  Google Scholar 

  17. Qin, Z., Ye, H., Li, G. Y., & Juang, B.-H.F. (2019). Deep learning in physical layer communications. IEEE Wireless Communications, 26(2), 93–99. https://doi.org/10.1109/MWC.2019.1800601.

    Article  Google Scholar 

  18. Hu, Q., Gao, F., Zhang, H., Jin, S., & Li, G. Y. (2021). Deep learning for channel estimation: Interpretation, performance, and comparison. IEEE Transactions on Wireless Communications, 20(4), 2398–2412. https://doi.org/10.1109/TWC.2020.3042074.

    Article  Google Scholar 

  19. Liu, J., Mei, K., Zhang, X., Ma, D., & Wei, J. (2019). Online extreme learning machine-based channel estimation and equalization for OFDM systems. IEEE Communications Letters, 23(7), 1276–1279. https://doi.org/10.1109/LCOMM.2019.2916797.

    Article  Google Scholar 

  20. Ye, H., Li, G. Y., & Juang, B.-H. (2018). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117. https://doi.org/10.1109/LWC.2017.2757490.

    Article  Google Scholar 

  21. Soltani, M., Pourahmadi, V., Mirzaei, A., & Sheikhzadeh, H. (2019). Deep learning-based channel estimation. IEEE Communications Letters, 23(4), 652–655. https://doi.org/10.1109/LCOMM.2019.2898944.

    Article  Google Scholar 

  22. Emir, A., Kara, F., Kaya, H., & Li, X. (2021). Deep learning-based flexible joint channel estimation and signal detection of multi-user OFDM-NOMA. Physics Communications, 48, 101443. https://doi.org/10.1016/j.phycom.2021.101443.

    Article  Google Scholar 

  23. Luo, C., Ji, J., Wang, Q., Chen, X., & Li, P. (2020). Channel state information prediction for 5G wireless communications: A deep learning approach. IEEE Transactions on Network Science and Engineering, 7(1), 227–236. https://doi.org/10.1109/TNSE.2018.2848960.

    Article  MathSciNet  Google Scholar 

  24. A General Architecture for Behavior Modeling of Nonlinear Power Amplifier using Deep Convolutional Neural Network. (2020).

  25. Khawam, Y., Hammi, O., Albasha, L., & Mir, H. (2020). Behavioral modeling of GaN doherty power amplifiers using memoryless polar domain functions and deep neural networks. IEEE Access, 8, 202707–202715. https://doi.org/10.1109/ACCESS.2020.3036186.

    Article  Google Scholar 

  26. Kumar, A., Saha, S., Abhiranjan & Bhattacharya, R. (2020). Neural network based joint carrier frequency offset and sampling frequency offset estimation and compensation in MIMO OFDM-OQAM systems. In XXXIIIrd general assembly and scientific symposium of the international union of radio science (pp. 1–4).https://doi.org/10.23919/URSIGASS49373.2020.9232207.

  27. Xie, Y., Teh, K. C., & Kot, A. C. (2021). Deep learning-based joint detection for OFDM-NOMA scheme. IEEE Communications Letters, 25(8), 2609–2613. https://doi.org/10.1109/LCOMM.2021.3077878.

    Article  Google Scholar 

  28. Dutta, A. K. (2019). MBER criterion assisted power NOMA design and performance analysis with estimated channel. IEEE Transactions on Vehicular Technology, 68(12), 11816–11826. https://doi.org/10.1109/TVT.2019.2944767.

    Article  Google Scholar 

  29. Kazemian, M., Abouei, J., & Anpalagan, A. (2021). A low complexity enhanced-NOMA scheme to reduce inter-user interference, BER and PAPR in 5G wireless systems. Physics Communications, 48, 101412. https://doi.org/10.1016/j.phycom.2021.101412.

    Article  Google Scholar 

  30. Ganji, M., Zou, X., & Jafarkhani, H. (2021). Asynchronous transmission for multiple access channels: Rate-region analysis and system design for uplink NOMA. IEEE Transactions on Wireless Communications, 20(7), 4364–4378. https://doi.org/10.1109/TWC.2021.3058405.

    Article  Google Scholar 

  31. Wang, X., Zhu, P., Li, D., Xu, Y., & You, X. (2021). Pilot-assisted SIMO-NOMA signal detection with learnable successive interference cancellation. IEEE Communications Letters, 25(7), 2385–2389. https://doi.org/10.1109/LCOMM.2021.3070705.

    Article  Google Scholar 

  32. Alsmadi, M. M., Ali, N. A., Hayajneh, M., & Ikki, S. S. (2020). Down-Link NOMA networks in the presence of IQI and imperfect SIC: Receiver design and performance analysis. IEEE Transactions on Vehicular Technology, 69(6), 6793–6797. https://doi.org/10.1109/TVT.2020.2982171.

    Article  Google Scholar 

  33. Trivedi, V. K., Ramadan, K., Kumar, P., Dessouky, M. I., & Abd El-Samie, F. E. (2019). Enhanced OFDM-NOMA for next generation wireless communication: A study of PAPR reduction and sensitivity to CFO and estimation errors. AEU - International Journal of Electronics and Communications, 102, 9–24. https://doi.org/10.1016/j.aeue.2019.01.009.

    Article  Google Scholar 

  34. Balogun, M. B., Takawira, F., & Oyerinde, O. O. (2019). Uplink OFDM based NOMA plagued with carrier frequency offset errors. In IEEE AFRICON conference. https://doi.org/10.1109/AFRICON46755.2019.9133906.

  35. Panchal, A., & Dutta, A. K. (2021). Performance analysis and design of MIMO power NOMA with estimated parameters error statistics along with SIC and hardware imperfections. IEEE Transactions on Vehicular Technology, 70(2), 1488–1500. https://doi.org/10.1109/TVT.2021.3053360.

    Article  Google Scholar 

  36. Gui, G., Huang, H., Song, Y., & Sari, H. (2018). Deep learning for an effective nonorthogonal multiple access scheme. IEEE Transactions on Vehicular Technology, 67(9), 8440–8450. https://doi.org/10.1109/TVT.2018.2848294.

    Article  Google Scholar 

  37. Lin, C., Chang, Q., & Li, X. (2019). A deep learning approach for mimo-noma downlink signal detection. Sensors (Switzerland), 19(11), 1–22. https://doi.org/10.3390/s19112526.

    Article  Google Scholar 

  38. Ganji, M., & Jafarkhani, H. (2019). Improving NOMA multi-carrier systems with intentional frequency offsets. IEEE Wireless Communications Letters, 8(4), 1060–1063. https://doi.org/10.1109/LWC.2019.2906170.

    Article  Google Scholar 

  39. Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings of the IEEE, 78(10), 1550–1560. https://doi.org/10.1109/5.58337.

    Article  Google Scholar 

  40. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

    Article  Google Scholar 

  41. Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhiranjan Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Saha, S. Machine/deep learning based estimation and detection in OFDM communication systems with various channel imperfections. Wireless Netw 28, 2637–2650 (2022). https://doi.org/10.1007/s11276-022-02994-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02994-y

Keywords

Navigation