Skip to main content

Advertisement

Log in

Full-duplex overlay cognitive wireless powered communication network using RF energy harvesting

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a novel full-duplex overlay cognitive wireless powered communication network (FD-OCWPCN) is proposed where a full-duplex (FD) hybrid-access point (H-AP) supports the full access of all battery-free secondary users (SUs). The H-AP broadcasts wireless power to empower the nearby SUs in the downlink (DL) phase while decoding the information transmitted uplink (UL) phase by the SUs, simultaneously. To overcome the self-interference (SI) phenomenon in FD-OCWPCN, the problem of maximizing the system sum-throughput with optimal UL-DL transmission/reception time and H-AP’s transmit power allocation is considered. This problem is non-convex under perfect/imperfect SI cancelation (SIC), so we employ the active interference temperature control and the gradient projection techniques to effectively reduce it into a convex problem. Closed-form expressions for the perfect/imperfect SIC cases are also derived. To assess the performance of the FD-OCWPCN, a comparison with a half-duplex OCWPCN (HD-OCWPCN) is provided. The achievable average sum-throughput for different FD/HD-OCWPCN is compared in the context of the average and peak transmit power at the H-AP, the number of SUs, path loss exponent and fairness metric. The simulation results depict the superiority of the FD-OCWPCN over the HD-OCWPCN for the perfect SIC and the effective imperfect SIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ercan, A. Ö., Sunay, M. O., & Akyildiz, I. F. (2018). RF energy harvesting and transfer for spectrum sharing cellular IoT communications in 5G systems. IEEE Transactions on Mobile Computing, 17(7), 1680–1694.

    Article  Google Scholar 

  2. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18, 1617–1655.

    Article  Google Scholar 

  3. Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.

    Article  Google Scholar 

  4. Bi, S., Zeng, Y., & Zhang, R. (2016). Wireless powered communication networks: An overview. IEEE Wireless Communications, 23(2), 10–18.

    Article  Google Scholar 

  5. Huang, K., Zhong, C., & Zhu, G. (2016). Some new research trends in wirelessly powered communications. IEEE Wireless Communications, 23(2), 19–27.

    Article  Google Scholar 

  6. Ramezani, P., & Jamalipour, A. (2017). Toward the evolution of wireless powered communication networks for the future Internet of Things. IEEE Network, 31(6), 62–69.

    Article  Google Scholar 

  7. Huang, K., & Zhou, X. (2015). Cutting the last wires for mobile communications by microwave power transfer. IEEE Communications Magazine, 53(6), 86–93.

    Article  MathSciNet  Google Scholar 

  8. Krikidis, I., Timotheou, S., Nikolaou, S., & Zheng, G. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.

    Article  Google Scholar 

  9. Mukhlif, F., Noordin, K., Mansoor, A., & Kasirun, Z. M. (2019). Green transmission for C-RAN based on SWIPT in 5G: A review. Wireless Networks, 25, 2621–2649.

    Article  Google Scholar 

  10. Faregh, E., & Dehghani, M. J. (2020). Performance analysis of MIMO and MISO time division duplexing wireless links with SWIPT and antenna selection. Wireless Networks, 26, 4517–4528.

    Article  Google Scholar 

  11. Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.

    Article  Google Scholar 

  12. Di, X., Xiong, K., Fan, P., Yang, H., & Letaief, K. B. (2017). Optimal resource allocation in wireless powered communication networks with user cooperation. IEEE Transactions on Wireless Communications, 16(12), 7936–7949.

    Article  Google Scholar 

  13. Shin, W., Vaezi, M., Lee, J., & Poor, H. V. (2018). Cooperative wireless powered communication networks with interference harvesting. IEEE Transactions on Vehicular Technology, 67(4), 3701–3705.

    Article  Google Scholar 

  14. Lin, X., Huang, L., Guo, C., Zhang, P., & Huang, M. (2017). Energy-efficient resource allocation in TDMS-based wireless powered communication networks. IEEE Communications Letters, 21(4), 861–864.

    Article  Google Scholar 

  15. Ju, H., & Zhang, R. (2014). Optimal resource allocation in full-duplex wireless-powered communication network. IEEE Transactions on Communications, 62(10), 3528–3540.

    Article  Google Scholar 

  16. Kang, X., Ho, C. K., & Sun, S. (2015). Full-duplex wireless-powered communication network with energy causality. IEEE Transactions on Wireless Communications, 14(10), 5539–5551.

    Article  Google Scholar 

  17. Lee, H., Lee, K. J., Kim, H., Clerckx, B., & Lee, I. (2016). Resource allocation techniques for wireless powered communication networks with energy storage constraint. IEEE Transactions on Wireless Communications, 15(4), 2619–2628.

    Article  Google Scholar 

  18. Xu, D., & Li, Q. (2018). Resource allocation for cognitive radio with primary user secrecy outage constraint. IEEE Systems Journal, 12(1), 893–904.

    Article  Google Scholar 

  19. Xu, D., & Li, Q. (2017). Price-based time and energy allocation in cognitive radio multipleaccess networks with energy harvesting. Science China Information Sciences, 60(10), 108302:1-108302:3.

    Google Scholar 

  20. Xu, D., & Li, Q. (2019). Resource allocation in cognitive wireless powered communication networks with wirelessly powered secondary users and primary users. Science China Information Sciences, 62(2), 29303:1-29303:3.

    Article  MathSciNet  Google Scholar 

  21. Lee, S., & Zhang, R. (2015). Cognitive wireless powered network: Spectrum sharing models and throughput maximization. IEEE Transactions on Cognitive Communications and Networking, 1(3), 335–346.

    Article  Google Scholar 

  22. Xu, D., & Li, Q. (2017). Joint power control and time allocation for wireless powered underlay cognitive radio networks. IEEE Wireless Communications Letters, 6(3), 294–297.

    Article  Google Scholar 

  23. Rezaie, M., Dosaranian-Moghadam, M., Bakhshi, H., & Bibalan, M. H. (2020). Sum-throughput maximization for overlay cognitive wireless powered network with energy harvesting capability. Transactions on Emerging Telecommunications Technologies, 31(10), 1–23.

    Article  Google Scholar 

  24. Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7), 1369–1409.

    Article  Google Scholar 

  25. Xu, D., & Li, Q. (2017). Resource allocation in underlay cognitive radio networks with full-duplex cognitive base station. International Journal of Communication Systems, 30(16), 1–18.

    Article  MathSciNet  Google Scholar 

  26. Jafari, R., Mahdavi, M., & Fazel, M. S. (2020). Sum-throughput maximization of secondary users in an in-band full-duplex cognitive wireless powered communication network. IEEE Systems Journal, 14(2), 2109–2120.

    Article  Google Scholar 

  27. Zhang, R., Liang, Y., & Cui, S. (2010). Dynamic resource allocation in cognitive radio networks. IEEE Signal Processing Magazine, 27(3), 102–114.

    Article  Google Scholar 

  28. Boyd, S., Parikh, N., Chu, E., Peleato, B., & Ecks, J. (2010). Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning.

  29. Jain, R., Chiu, D., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems, Technical Report. TR-30, DEC Research Report TR-301.

  30. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Dosaranian-Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Proof of Proposition 2

Proposition 2 is proved by contradiction. First, we solve the problem of optimal allocation time, i.e., \({\varvec{\tau}}^{*} = \left[ {\tau_{0}^{*} , \tau_{1}^{*} , \ldots , \tau_{K}^{*} } \right]\). Assume that \(\tilde{\user2{\tau }} = \left[ {\widetilde{{\tau_{0} }},\widetilde{{\tau_{1} }}, \ldots , \widetilde{{\tau_{K} }}} \right]\) are the optimal time solutions of (P4) which satisfy the constraint \(\mathop \sum \limits_{i = 0}^{K} \widetilde{{\tau_{i} }} < 1\). Therefore \(\widetilde{{\tau_{0} }} < 1 - \mathop \sum \limits_{i = 1}^{K} \widetilde{{\tau_{i} }}\). On the other hand, considering any value of \({\varvec{E}}_{h} \ge \bf 0\), it can be easily proved that the objective function (P4) is a monotonically increasing function of \(\tau_{0}\), because

$$\frac{\partial }{\partial {\tau }_{0}}\left(\sum_{i=1}^{K}{\tau }_{i}{\mathit{log}}_{2}\left(1+\frac{1}{{\tau }_{i}}\frac{{\alpha }_{i}\sum_{\begin{array}{c}j=0\\ j\ne i\end{array}}^{K}{E}_{h,j}+{\beta }_{i}\sum_{\begin{array}{c}j=0\\ j\ne i\end{array}}^{K}{\tau }_{j}}{{\sigma }_{h}^{2}}\right)\right)=\frac{1}{{\mathrm{ln}(2)\sigma }_{h}^{2}} \sum_{i=1}^{K}\frac{{\beta }_{i}}{1+\frac{1}{{\tau }_{i}}\frac{{\alpha }_{i}\sum_{\begin{array}{c}j=0\\ j\ne i\end{array}}^{K}{E}_{h,j}+{\beta }_{i}\sum_{\begin{array}{c}j=0\\ j\ne i\end{array}}^{K}{\tau }_{j}}{{\sigma }_{h}^{2}}} \ge 0,$$
(A.1)

with \(\left[ {1 - \mathop \sum \limits_{i = 1}^{K} \widetilde{{\tau_{i} }},\widetilde{{\tau_{1} }}, \ldots , \widetilde{{\tau_{K} }} } \right]\), the value of the objective function (P4) is always greater than \(\bf\tilde{\user2{ \tau }}\). This contradicts our assumption, so the condition \(\mathop \sum \limits_{i = 0}^{K} \tau_{i}^{*} = 1\) must always be satisfied to find the optimal time solutions.

Similarly, we can use the same approach to find the optimal energy solutions, i.e., \({\varvec E}_{h}^{*} = \left[ {E_{h,0}^{*} , E_{h,1}^{*} , \ldots , E_{h,K}^{*} } \right]\). It is assumed that \(\widetilde{{{\varvec{E}}_{h} }} = \left[ {\widetilde{{E_{h,0} }},\widetilde{{E_{h,1} }}, \ldots , \widetilde{{E_{h,K} }}} \right]\) are the optimal energy solutions of (P4) and they meet the constraint \(\mathop \sum \limits_{i = 0}^{K} \widetilde{{E_{h,i} }} < P_{avg}\), so \(\widetilde{{E_{h,0} }} < P_{avg} - \mathop \sum \limits_{i = 1}^{K} \widetilde{{E_{h,i} }}\). On the other hand, given every \({\varvec{\tau}} \ge 0\), the objective function of (P4) is a monotonically increasing function of \(E_{h,0}\), because

$$\frac{\partial }{{\partial E_{h,0} }}\left( {\mathop \sum \limits_{i = 1}^{K} \tau_{i} \log_{2} \left( {1 + \frac{1}{{\tau_{i} }}\frac{{\alpha_{i} \mathop \sum \nolimits_{{\begin{array}{*{20}c} {j = 0} \\ {j \ne i} \\ \end{array} }}^{K} E_{h,j} + \beta_{i} \mathop \sum \nolimits_{{\begin{array}{*{20}c} {j = 0} \\ {j \ne i} \\ \end{array} }}^{K} \tau_{j} }}{{\sigma_{h}^{2} }}} \right)} \right) = \frac{1}{{{\text{ln}}\left( 2 \right)\sigma_{h}^{2} }} \mathop \sum \limits_{i = 1}^{K} \frac{{\alpha_{i} }}{{1 + \frac{1}{{\tau_{i} }}\frac{{\alpha_{i} \mathop \sum \nolimits_{{\begin{array}{*{20}c} {j = 0} \\ {j \ne i} \\ \end{array} }}^{K} E_{h,j} + \beta_{i} \mathop \sum \nolimits_{{\begin{array}{*{20}c} {j = 0} \\ {j \ne i} \\ \end{array} }}^{K} \tau_{j} }}{{\sigma_{h}^{2} }}}} \ge 0.$$
(A.2)

The value of the objective function (P4) under the vector \(\left[ {1 - \mathop \sum \limits_{i = 0}^{K} \widetilde{{E_{h,i} }},\widetilde{{E_{h,1} }}, \ldots , \widetilde{{E_{h,K} }} } \right]\) is always greater than \(\widetilde{{{\varvec{E}}_{h} }}\). This contradicts our assumptions and the proof of Proposition 2 is done.

Appendix B

2.1 Proof of Proposition 3

\(\hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right)\), \(i = 1, 2, \ldots , K,\) denotes a jointly concave function of \({\varvec{E}}_{h}\) and \({\varvec{\tau}}\) if [30]

$${\hat{\mathbf{V}}}^{T} { }\nabla^{2} \hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right){ }{\hat{\mathbf{V}}} \le 0,$$
(B.1)

where \({\hat{\mathbf{V}}} \in {\mathbb{R}}^{{2\left( {K + 1} \right) \times 1}}\) is an arbitrary real vector. Also, the Hessian for \(\hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right)\) is defined as follows:

$${\nabla }^{2}{\widehat{R}}_{i}^{SN-FD-NoSI}\left({\tau }_{i},{E}_{h,i}\right)=\left[\begin{array}{cc}\widehat{\mathbf{A}}& \widehat{\mathbf{B}}\\ {\widehat{\mathbf{B}}}^{\mathrm{T}}& \widehat{\mathbf{C}}\end{array}\right],$$
(B.2)

where \({\hat{\mathbf{A}}}\), \({\hat{\mathbf{B}}}\), and \({\hat{\mathbf{C}}}\) are:

$$\left[ {{\hat{\mathbf{A}}}} \right]_{j,k} = \frac{{\partial^{2} \hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right)}}{{\partial \tau_{j} \partial \tau_{k} }} = \left\{ {\begin{array}{*{20}c} { - \frac{1}{ln2}\left( {\frac{{\mho_{i}^{2} }}{{\tau_{i} \left( {1 + {\Omega }_{i} } \right)^{2} }}} \right),} & {j = k = i.} \\ {0,} & {{\text{otherwise}}.} \\ \end{array} } \right.$$
(B.3)
$$\left[ {{\hat{\mathbf{B}}}} \right]_{j,k} = \frac{{\partial^{2} \hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right)}}{{\partial \tau_{j} \partial E_{h,k} }} = \left\{ {\begin{array}{*{20}c} { - \frac{1}{ln2}\left( {\frac{{\mho_{i} \left( {\alpha_{i} /\sigma_{h}^{2} } \right)}}{{\tau_{i} \left( {1 + {\Omega }_{i} } \right)^{2} }}} \right),} & {j = k = i.} \\ {0,} & {{\text{otherwise}}.} \\ \end{array} } \right.$$
(B.4)
$$\left[ {{\hat{\mathbf{C}}}} \right]_{j,k} = \frac{{\partial^{2} \hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right)}}{{\partial E_{h,j} \partial E_{h,k} }} = \left\{ {\begin{array}{*{20}c} { - \frac{1}{ln2}\left( {\frac{{\left( {\alpha_{i} /\sigma_{h}^{2} } \right)^{2} }}{{\tau_{i} \left( {1 + {\Omega }_{i} } \right)^{2} }}} \right),} & {j = k = i.} \\ {0,} & {{\text{otherwise}}.} \\ \end{array} } \right.$$
(B.5)

where \(\left[ {\mathbf{X}} \right]_{j,k}\) is the element of matrix \({\mathbf{X}}\). In addition, \({\Omega }_{i} = \left( {\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right)} \right)/\left( {\tau_{i} \sigma_{h}^{2} } \right)\) and \(\mho_{i} = \left( {\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} } \right)/\left( {\tau_{i} \sigma_{h}^{2} } \right)\). Define \({\hat{\mathbf{V}}} = \left[ {\begin{array}{*{20}c} {{\hat{\mathbf{V}}}_{1}^{T} } & {{\hat{\mathbf{V}}}_{2}^{T} } \\ \end{array} } \right]^{T}\), where \({\hat{\mathbf{V}}}_{1} = \left[ {\begin{array}{*{20}c} {\hat{v}_{10} } & {\hat{v}_{11} } & \ldots & {\hat{v}_{1K} } \\ \end{array} } \right]^{T}\) and \({\hat{\mathbf{V}}}_{2} = \left[ {\begin{array}{*{20}c} {\hat{v}_{20} } & {\hat{v}_{21} } & \ldots & {\hat{v}_{2K} } \\ \end{array} } \right]^{T}\)are two arbitrary vectors. Since \({\hat{\mathbf{V}}}_{1}^{T} {\mathbf{\hat{B}\hat{V}}}_{2} = {\hat{\mathbf{V}}}_{2}^{T} {\hat{\mathbf{B}}}^{T} {\hat{\mathbf{V}}}_{1}\), \({\hat{\mathbf{B}}}\) shows a symmetric matrix. According to Eqs. (B.3)-(B.5) for \({\hat{\mathbf{V}}}^{T} { }\nabla^{2} \hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right){ }{\hat{\mathbf{V}}}\), we have:

$${\hat{\mathbf{V}}}^{T} { }\nabla^{2} \hat{R}_{i}^{SN - FD - NoSI} \left( {\tau_{i} ,E_{h,i} } \right){ }{\hat{\mathbf{V}}} = { }{\hat{\mathbf{V}}}_{1}^{T} {\hat{\mathbf{A}}}{ }{\hat{\mathbf{V}}}_{1} + 2{ }{\hat{\mathbf{V}}}_{2}^{T} {\hat{\mathbf{B}}}{ }{\hat{\mathbf{V}}}_{1} + { }{\hat{\mathbf{V}}}_{2}^{T} {\hat{\mathbf{C}}}{ }{\hat{\mathbf{V}}}_{2} = - \frac{1}{{ \tau_{i} \left( {1 + {\Omega }_{i} } \right)^{2} ln2}}\left( {\mho_{i} \hat{v}_{1i} + \left( { \alpha_{i} /\sigma_{h}^{2} } \right)\hat{v}_{2i} } \right)^{2} \le 0.$$
(B.6)

Thus, Proposition 3 is proved.

Appendix C

3.1 Proof of Proposition 4

From Lemma 3.2 in [11], the objective function of (P5) is a monotonically increasing function of \(\tau_{i} , E_{h,i} ,{ } i = 1, 2, \ldots , K.\) So, the optimal time in dedicated energy time slot (\(\tau_{0}^{*}\)) and the optimal transmitted energy in the time slot of the dedicated energy (\(E_{h,0}^{*}\)) are obtained as,

$$\tau_{0}^{*} = min\left( {\left[ {\frac{{\left( {R_{min} - r\left( {\Upsilon } \right)} \right)}}{{\left( {r\left( 0 \right) - r\left( {\Upsilon } \right)} \right)}}} \right]^{ + } , E_{h,0}^{*} /P_{peak} ,1} \right), { E_{h,0}^{*} = P_{peak} \tau_{0}^{*} }.$$
(C.1)

where \(\left( {\mathcal{t}} \right)^{ + } \triangleq max\left( {0,\mathcal{t} } \right)\). Therefore, (P5) is simplified to the following problem:

$$\begin{aligned}& \left( {P5 - 1} \right): \mathop {maximize}\limits_{{\user2{\tau^{\prime}} \ge {\bf 0},{\varvec{E}}_{h}^{^{\prime}} \ge {\bf 0}}} \mathop \sum \limits_{i = 1}^{K} \tau_{i} \log_{2} \left( {1 + \frac{1}{{\tau_{i} }}\frac{{\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right)}}{{\sigma_{h}^{2} }}} \right)\\ & {\text{subject to}}:\end{aligned}$$
(C.2)
  1. (a)

    \(\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right) \le \gamma_{i} \left( {\Upsilon } \right)\tau_{i} { }, i = 1, 2, \ldots , K,\)

  2. (b)

    \(\mathop \sum \limits_{i = 1}^{K} E_{h,i} = P_{avg} - E_{h,0}^{*}\),

  3. (c)

    \(\mathop \sum \limits_{i = 1}^{K} \tau_{i} = 1 - \tau_{0}^{*} ,\)

  4. (d)

    \(E_{h,i} - P_{peak} \tau_{i} \le 0, i = 1, 2, \ldots , K,\)

    $${\text{(e) }} 0 \le \tau_{i} \le 1, E_{h,i} \ge 0, i = 1, 2, \ldots , K.$$

where \(\user2{\bf \tau^{\prime}} = \left[ {{ }\tau_{1} ,{ } \ldots ,{ }\tau_{K} } \right]\) and \({\varvec{E}}_{h}^{^{\prime}} = \left[ {{ }E_{h,1} ,{ } \ldots ,{ }E_{h,K} } \right].\) Given that (P5-1) is a convex optimization problem and satisfies the Slater condition [30], the duality gap between the problem and its dual must be zero. Now, we solve the dual problem of (P5-1). The partial Lagrangian function of (P5-1) with respect to constraints (a, b and c) is expressed as:

$${\mathcal{L}}\left( {\user2{\bf{\tau}^{\prime}},{\varvec{E}}_{h}^{^{\prime}} ,{\varvec{\lambda}},\mu ,\nu } \right) = \hat{R}_{sum}^{SN - FD - NoSI} \left( {\user2{\bf{\tau}^{\prime}}} \right) - \mathop \sum \limits_{i = 1}^{K} \lambda_{i} \left( {\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right) - \gamma_{i} \left( {\Upsilon } \right)\tau_{i} } \right)$$
$$+ \mu \left( {\mathop \sum \limits_{i = 1}^{K} E_{h,i} - (P_{avg} - E_{h,0}^{*} )} \right) + \nu \left( {\mathop \sum \limits_{i = 1}^{K} \tau_{i} - \left( {1 - \tau_{0}^{*} } \right)} \right),$$
(C.3)

where, \(\hat{R}_{sum}^{SN - FD - NoSI} \left( {\user2{\bf{\tau}^{\prime}}} \right) = \mathop \sum \limits_{i = 1}^{K} \tau_{i} \log_{2} \left( {1 + \frac{1}{{\tau_{i} }}\frac{{\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right)}}{{\sigma_{h}^{2} }}} \right){ }\) and \({\varvec{\lambda}} = \left[ {\lambda_{1} ,\lambda_{2} ,{ } \ldots ,{ }\lambda_{K} } \right] \ge \bf{0}\) is a non-negative vector of the Lagrange multipliers associated with the constraints in (a) of (P5-1). The parameters \(\mu\) and \(\nu\) are also the assigned Lagrangian dual variables to the total energy and time allocation constraints during a block time, according to the constraints (b) and (c) of (P5-1). Then the dual function of (P5-1) is expressed as \({\mathcal{G}}\left( {{\varvec{\lambda}},\mu ,\nu } \right) = \mathop {\max }\limits_{{\left( {\user2{\bf{\tau}^{\prime}},{\varvec{E}}_{h}^{^{\prime}} } \right) \in {\mathcal{D}}}} \left( {{\mathcal{L}}\left( {\user2{\bf{\tau}^{\prime}},{\varvec{E}}_{h}^{^{\prime}} ,{\varvec{\lambda}},\mu ,\nu } \right)} \right),\)where \({\mathcal{D}}\) is a realizable set of \(\left( {\user2{\bf{\tau}^{\prime}},{\varvec{E}}_{h}^{^{\prime}} } \right)\) with respect to the constraints (d) and (e) of (P5-1). The dual problem of (P5-1) is thus given by \(\mathop {\min }\limits_{{{\varvec{\lambda}},\mu ,\nu }} {\mathcal{G}}\left( {{\varvec{\lambda}},\mu ,\nu } \right).\) The Lagrangian function of (C.3) is:

$${\mathcal{L}}\left( {\user2{\tau^{\prime}},{\varvec{E}}_{h} ,{\varvec{\lambda}}} \right) = \mathop \sum \limits_{i = 1}^{K} {\mathcal{L}}_{i} \left( {\tau_{i} , E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right) - \lambda_{i} \left( {\alpha_{i} P_{avg} + \beta_{i} } \right) - \mu (P_{avg} - E_{h,0}^{*} ) - \nu \left( {1 - \tau_{0}^{*} } \right),$$
(C.4)

where \({\mathcal{L}}_{i} \left( {\tau_{i} ,{ }E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right) = \hat{R}_{i}^{SN - FD - NoSI} \left( {\user2{\bf{\tau}^{\prime}}} \right) + \left( {\lambda_{i} \alpha_{i} + \mu } \right)E_{h,i} + \left( {\lambda_{i} \left( {\beta_{i} + \gamma_{i} \left( {\Upsilon } \right)} \right) + \nu } \right)\tau_{i}\). To maximize the Lagrangian function at \({\mathcal{G}}\left( {{\varvec{\lambda}},\mu ,\nu } \right)\), we must maximize each of \({\mathcal{L}}_{i} \left( {\tau_{i} ,{ }E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right)\) with respect to the constraints (d) and (e) of (P5-1). Because the function \({\mathcal{L}}_{i} \left( {\tau_{i} ,{ }E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right)\) with \(\lambda_{i}\), \(\mu\) and \(\nu\) depends only on \(\tau_{i}\) and \(E_{h,i}\). Therefore, we can solve the following sub-problem:

$$\begin{aligned}& \left( {P5 - 2} \right): \mathop {maximize}\limits_{{\tau_{i} , E_{h,i} }} {\mathcal{L}}_{i} \left( {\tau_{i} , E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right)\\ & {\text{subject to}}:\end{aligned}$$
(C.5)

(a) \(E_{h,i} \le P_{peak} \tau_{i} , i = 1, 2, \ldots , K,\)

$$ {\text{(b) }}0 \le \tau_{i} \le 1, E_{h,i} \ge 0, i = 1, 2, \ldots ,K.$$

To solve (P5-2) when \(\lambda_{i}\), \(\mu\) and \(\nu\) are available, we can obtain \(E_{h,i}\) with \(\tau_{i}\) and vice versa \(\tau_{i}\) with \(E_{h,i}\). For this purpose, first we compute the partial derivation of \({\mathcal{L}}_{i} \left( {\tau_{i} ,{ }E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right)\) for \(E_{h,i}\) with given \(\lambda_{i}\), \(\mu\), \(\nu\) and \(\tau_{i}\). By letting \(\partial {\mathcal{L}}_{i} \left( {\tau_{i} ,{ }E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right)/\partial E_{h,i} = 0,\) we have:

$$\frac{{\alpha_{i} /\sigma_{h}^{2} }}{{1 + \left( {\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right)} \right)/\left( {\tau_{i} \sigma_{h}^{2} } \right)}} = \left( {\lambda_{i} \alpha_{i} + \mu } \right)ln2.$$
(C.6)

Note that \(0 \le E_{h,i} \le P_{peak} \tau_{i}\) lies in the feasible region \({\mathcal{D}}\) due to the constraints (d) and (e) of (P5-1). Therefore, according to (C.6), \(E_{h,i}\) is obtained as follows:

$$E_{h,i} = min\left[ {\left( {P_{avg} + \frac{{\tau_{i} \sigma_{h}^{2} }}{{\alpha_{i} }} + \frac{{\beta_{i} \left( {1 - \tau_{i} } \right)}}{{\alpha_{i} }} - \frac{{\tau_{i} }}{{\left( {\lambda_{i} \alpha_{i} + \mu } \right)ln2}}} \right)^{ + } , P_{peak} \tau_{i} } \right], i = 1, 2, \ldots ,K.$$
(C.7)

The left-hand side of (C.6) is always positive, so, \(\mu > \mathop {\max }\limits_{{i = 1,{ }2,{ } \ldots ,K}} \left( { - \lambda_{i} \alpha_{i} } \right).{ }\) Secondly, for \(E_{h,i}\), we obtain a partial derivation of \({\mathcal{L}}_{i} \left( {\tau_{i} ,{ }E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right)\) with respect to \(\tau_{i}\) with given \(\lambda_{i}\), \(\mu\), \(\nu\). Hence \(\partial {\mathcal{L}}_{i} \left( {\tau_{i} ,{ }E_{h,i} ,\lambda_{i} ,\mu ,\nu } \right)/\partial \tau_{i} = 0,\) is:

$$\ln \left( {1 + \mathcal{z}_{i} } \right) - \frac{{\mathcal{z}_{i} }}{{1 + \mathcal{z}_{i} }} - \frac{{\beta_{i} /\sigma_{h}^{2} }}{{1 + \mathcal{z}_{i} }} = - \left( {\lambda_{i} \left( {\beta_{i} + \gamma_{i} \left( {\Upsilon } \right)} \right) + \nu } \right)ln2,$$
(C.8)

where \(\mathcal{z}_{i} = \frac{{\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right)}}{{\tau_{i} \sigma_{h}^{2} }} \ge 0, i = 1, 2, \ldots ,K.\) Assuming the left-hand side of (C.8) equals \(h\left( {\mathcal{z}_{i} } \right)\), it is straightforward to show that \(h\left( {\mathcal{z}_{i} } \right)\) is a monotonically increasing function of \(\mathcal{z}_{i}\), because \(\partial h\left( {\mathcal{z}_{i} } \right)/\partial \mathcal{z}_{i} = \left( {\mathcal{z}_{i} + \beta_{i} /\sigma_{h}^{2} } \right)/\left( {1 + \mathcal{z}_{i} } \right)^{2} \ge 0\). Therefore, since \(\mathcal{z}_{i}\)’s are non-negative, then the minimum value of \(h\left( {\mathcal{z}_{i} } \right)\) is equal to \(- \beta_{i} /\sigma_{h}^{2}\), which is obtained for \(\mathcal{z}_{i} = 0\). If \(- \beta_{i} /\sigma_{h}^{2} > - \left( {\lambda_{i} \left( {\beta_{i} + \gamma_{i} \left( {\Upsilon } \right)} \right) + \nu } \right)ln2\), then \(\mathcal{z}_{i}^{*}\) does not exist to solve (C.8). In addition, if \(- \beta_{i} /\sigma_{h}^{2} \le - \left( {\lambda_{i} \left( {\beta_{i} + \gamma_{i} \left( {\Upsilon } \right)} \right) + \nu } \right)ln2 < 0\), we can find \(\mathcal{z}_{i}^{*}\) to solve (C.8) and obtain non-zero \(\tau_{i}\). So, \(\nu \le \mathop {\min }\limits_{{i = 1,2{ } \ldots ,K}} \left( {\frac{{\beta_{i} }}{{\sigma_{h}^{2} ln2}} - \lambda_{i} \left( {\beta_{i} + \gamma_{i} \left( {\Upsilon } \right)} \right)} \right)\). Since \(0 \le E_{h,i} /P_{peak} \le \tau_{i}\) is in the feasible region \({\mathcal{D}}\), so as soon as \(\mathcal{z}_{i}^{*}\) is calculated from the solution (C.8), \(\tau_{i}\) is achieved as follows:

$$\tau_{i} = max\left[ {\left( {\frac{{\left( {\alpha_{i} \left( {P_{avg} - E_{h,i} } \right) + \beta_{i} } \right)}}{{\left( {\mathcal{z}_{i} \sigma_{h}^{2} + \beta_{i} } \right)}}} \right)^{ + } , E_{h,i} /P_{peak} } \right],$$
(C.9)

and the proof of Proposition 4 is attained.

Appendix D

4.1 Proof of Proposition 5

According to the proof of Proposition 3, we must show that the Hessian matrix of \(\hat{R}_{i}^{SN - FD} \left( {\tau_{i} ,{ }p_{h,i}^{{\left( {l - 1} \right)}} } \right)\), \(\forall i \in \left\{ {1,{ }2,{ } \ldots ,{ }K} \right\}\), is non-positive. The Hessian matrix for \(\hat{R}_{i}^{SN - FD} \left( {\tau_{i} ,{ }p_{h,i}^{{\left( {l - 1} \right)}} } \right){ }\) is defined as \(\left[ {\hat{d}_{j,k}^{\left( i \right)} } \right]\), where \(\hat{d}_{j,k}^{\left( i \right)}\) denotes the element of \({ }\nabla^{2} \hat{R}_{i}^{SN - FD} \left( {\tau_{i} ,{ }p_{h,i}^{{\left( {l - 1} \right)}} } \right)\). Therefore,

$$\hat{d}_{j,k}^{\left( i \right)} = \left\{ {\begin{array}{*{20}c} { - \frac{1}{ln2}\left( {\frac{{\left( {\hat{\mho }_{i} } \right)^{2} }}{{\tau_{i} \left( {1 + {\hat{\Omega }}_{i} } \right)^{2} }}} \right),} & {j = k = i,} \\ {0,} & {otherwise,} \\ \end{array} } \right.$$
(D.1)

where \({\hat{\Omega }}_{i} = \frac{{\left( {\alpha_{i} \left( {P_{avg} - \tau_{i} p_{h,i}^{{\left( {l - 1} \right)}} } \right) + \beta_{i} \left( {1 - \tau_{i} } \right)} \right)}}{{\tau_{i} \left( {\omega p_{h,i}^{{\left( {l - 1} \right)}} + \sigma_{h}^{2} } \right)}}\)and \(\hat{\mho }_{i} = \frac{{\left( {\alpha_{i} P_{avg} + \beta_{i} } \right)}}{{\tau_{i} \left( {\omega p_{h,i}^{{\left( {l - 1} \right)}} + \sigma_{h}^{2} } \right)}}\). For any arbitrary vector \({\mathbf{V}} = \left[ {\begin{array}{*{20}c} {v_{0} } & {v_{1} } & \ldots & {v_{K} } \\ \end{array} } \right]^{T}\) and also \(\tau_{i} \ge 0\), it is deduced \({\mathbf{V}}^{T} { }\nabla^{2} \hat{R}_{i}^{SN - FD} \left( {\tau_{i} ,{ }p_{h,i}^{{\left( {l - 1} \right)}} } \right){ }{\mathbf{V}} \le 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie, M., Dosaranian-Moghadam, M., Bakhshi, H. et al. Full-duplex overlay cognitive wireless powered communication network using RF energy harvesting. Wireless Netw 28, 2837–2856 (2022). https://doi.org/10.1007/s11276-022-02995-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02995-x

Keywords

Navigation