Skip to main content

Advertisement

Log in

EEGBRP: an energy-efficient grid-based routing protocol for underwater wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Underwater sensor networks (UWSN) include a set of sensor nodes equipped with limited batteries. These batteries are not rechargeable and replacement of them is difficult and costly due to difficult access and condition of the underwater environment. So, the optimization and management of energy are the most important issues for UWSNs. Many studies have been presented in this field that the most focus of them has been on improving and optimizing routing and data transmission because of the highest energy consumption for routing and sending data. While each of these studies was effective in improving energy-related issues, the need to develop an energy-efficient and reliable routing protocol for UWSNs is still under investigation. In this paper, a method called an energy-efficient grid-based routing protocol for underwater wireless sensor networks (EEGBRP) using TOPSIS technique and 3-dimensional cell division is introduced. EEGBRP is a multi-hop method which in the first step the network is divided into three-dimensional cells. In the second step head-cell nodes or gateways are selected and data routing and communication is performed in the third step. The simulation results using NS2 indicated the successful performance and significant superiority of EEGBRP compared to previous researches. This improvement for different scenarios compared to EMGGR method was 10.65% for successful delivery, 9% for the optimization of energy consumption and 8.8% for end-to-end delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Khisa, S., & Moh, S. (2021). Survey on recent advancements in energy-efficient routing protocols for underwater wireless sensor networks. IEEE Access, 9, 55045–55062.

    Article  Google Scholar 

  2. Siwach, V., Sehrawat, H., & Singh, Y. (2021). Energy-efficient schemes in underwater wireless sensor network: A review. In V. Singh, V. K. Asari, S. Kumar, & R. B. Patel (Eds.), Computational Methods and Data Engineering (pp. 495–510). Springer. https://doi.org/10.1007/978-981-15-7907-3_38

    Google Scholar 

  3. Luo, J., Chen, Y., Wu, M., & Yang, Y. (2021). A survey of routing protocols for underwater wireless sensor networks. IEEE Communications Surveys & Tutorials, 23(1), 137–160.

    Article  Google Scholar 

  4. Haque, K. F., Kabir, K. H., & Abdelgawad, A. (2020). Advancement of routing protocols and applications of underwater wireless sensor network (UWSN)—A survey. Journal of Sensor and Actuator Networks, 9(2), 19.

    Article  Google Scholar 

  5. Khan, H., Hassan, S. A., & Jung, H. (2020). On underwater wireless sensor networks routing protocols: A review. IEEE Sensors Journal, 20(18), 10371–10386.

    Article  Google Scholar 

  6. Jouhari, M., Ibrahimi, K., Tembine, H., & Ben-Othman, J. (2019). Underwater wireless sensor networks: A survey on enabling technologies, localization protocols, and internet of underwater things. IEEE Access, 7, 96879–96899.

    Article  Google Scholar 

  7. Khandelwal, D., Mahajan, R., & Bagai, D. (2018). Underwater wireless sensor network: A review. Int. J. Adv. Res. Electron. Commun. Eng, 7(5), 424–428.

    Google Scholar 

  8. Watt, A., Phillips, M. R., Campbell, C.-A., Wells, I., & Hole, S. (2019). Wireless Sensor Networks for monitoring underwater sediment transport. Science of The Total Environment, 667, 160–165.

    Article  Google Scholar 

  9. Mohamed, R. E., Saleh, A. I., Abdelrazzak, M., & Samra, A. S. (2018). Survey on wireless sensor network applications and energy efficient routing protocols. Wireless Personal Communications, 101(2), 1019–1055.

    Article  Google Scholar 

  10. Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2019/6470359

    Article  Google Scholar 

  11. Jiang, J., Han, G., Guo, H., Shu, L., & Rodrigues, J. J. (2016). Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks. Journal of Network and Computer Applications, 59, 4–13.

    Article  Google Scholar 

  12. Ahmed, F., Wadud, Z., Javaid, N., Alrajeh, N., Alabed, M. S., & Qasim, U. (2018). Mobile sinks assisted geographic and opportunistic routing based interference avoidance for underwater wireless sensor network. Sensors, 18(4), 1062.

    Article  Google Scholar 

  13. Ahmed, F., Javaid, N., Wadud, Z., Sher, A., & Ahmed, S. (2019). Geospatial division based geographic routing for interference avoidance in underwater WSNs. In M. A. Jan, F. Khan, & M. Alam (Eds.), Recent Trends and Advances in Wireless and IoT-enabled Networks (pp. 207–214). USA: Springer.

    Chapter  Google Scholar 

  14. Al-Salti, F., Alzeidi, N., Day, K., & Touzene, A. (2019). An efficient and reliable grid-based routing protocol for UWSNs by exploiting minimum hop count. Computer Networks, 162, 106869.

    Article  Google Scholar 

  15. Ejaz, M., Javaid, N., Maqsood, H., Shakeel, U., Khan, Z. A., Qasim, U. (2016). An energy efficient hybrid clustering routing protocol for underwater WSNs (pp. 526–532).

  16. Mangla, J., & Rakesh, N. (2018). Cluster-based energy-efficient communication in underwater wireless sensor networks (pp. 1–8). Springer.

    Google Scholar 

  17. Bhattacharjya, K., Alam, S., De, D. (2019). CUWSN: Energy efficient routing protocol selection for cluster based underwater wireless sensor network. Microsystem Technologies 1–17.

  18. Krishnaswamy, V., & Manvi, S. S. (2019). Fuzzy and PSO based clustering scheme in underwater acoustic sensor networks using energy and distance parameters. Wireless Personal Communications, 108(3), 1529–1546.

    Article  Google Scholar 

  19. Bai, W., Wang, H., He, K., & Zhao, R. (2018). Path diversity improved opportunistic routing for underwater sensor networks. Sensors, 18(4), 1293.

    Article  Google Scholar 

  20. Khan, A., Ahmedy, I., Anisi, M. H., Javaid, N., Ali, I., Khan, N., Alsaqer, M., & Mahmood, H. (2018). A localization-free interference and energy holes minimization routing for underwater wireless sensor networks. Sensors, 18(1), 165.

    Article  Google Scholar 

  21. Khasawneh, A., Abd Latiff, M. S. B., Kaiwartya, O., & Chizari, H. (2018). A reliable energy-efficient pressure-based routing protocol for underwater wireless sensor network. Wireless Networks, 24(6), 2061–2075.

    Article  Google Scholar 

  22. Kamaruddin, A., Ngadi, M. A., & Harun, H. (2019). Energy efficient opportunistic routing protocol (EE-OR) for underwater wireless sensor network. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1174/1/012010

    Google Scholar 

  23. Al-Salti, F., Alzeidi, N., Day, K., Arafeh, B., & Touzene, A. (2017). Grid-based priority routing protocol for UWSNs. International Journal of Computer Networks and Communications, 9(6), 1–20.

    Article  Google Scholar 

  24. Day, K., Touzene, A., Arafeh, B., & Alzeidi, N. (2017). GARP: A Highly reliable grid-based adaptive routing protocol for underwater wireless sensor networks. International journal of Computer Networks & Communications, 9, 71–82.

    Article  Google Scholar 

  25. Al Salti, F., Alzeidi, N., & Arafeh, B. R. (2017). EMGGR: An energy-efficient multipath grid-based geographic routing protocol for underwater wireless sensor networks. Wireless Networks, 23(4), 1301–1314.

    Article  Google Scholar 

  26. Al-Subhi, T., Arafeh, B., Alzeidi, N., Day, K., & Touzene, A. (2018). A void avoidance scheme for grid-based multipath routing in underwater wireless sensor networks. Wireless Sensor Network, 10(7), 131–156.

    Article  Google Scholar 

  27. Ulrich, R. (1967). Principles of underwater sound for engineers. McGraw-Hill.

    Google Scholar 

  28. Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 34–43.

    Article  Google Scholar 

  29. Brekhovskikh, L. M., Lysanov, Y. P., & Beyer, R. T. (1991). Fundamentals of ocean acoustics. Berlin: Acoustical Society of America.

    Book  MATH  Google Scholar 

  30. Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34(12), 1936–1956.

    Article  Google Scholar 

  31. Luo, H., Guo, Z., Wu, K., Hong, F., & Feng, Y. (2009). Energy balanced strategies for maximizing the lifetime of sparsely deployed underwater acoustic sensor networks. Sensors, 9(9), 6626–6651.

    Article  Google Scholar 

  32. Wang, H., Wang, S., Zhang, E., & Lu, L. (2018). An energy balanced and lifetime extended routing protocol for underwater sensor networks. Sensors, 18(5), 1596.

    Article  Google Scholar 

  33. Mortazavi, E., Javidan, R., Dehghani, M. J., & Kavoosi, V. (2017). A robust method for underwater wireless sensor joint localization and synchronization. Ocean Engineering, 137, 276–286.

    Article  Google Scholar 

  34. Xie, P., Zhou, Z., Peng, Z., Yan, H., Hu, T., Cui, J.-H., Shi, Z., Fei, Y., Zhou, S. (2009) Aqua-Sim: An NS-2 based simulator for underwater sensor networks (pp. 1–7).

  35. Basagni, S., Petrioli, C., Petroccia, R., & Spaccini, D. (2015). CARP: A channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Networks, 34, 92–104.

    Article  Google Scholar 

  36. Rani, S., Ahmed, S. H., Malhotra, J., & Talwar, R. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications, 92, 42–50.

    Article  Google Scholar 

  37. Javaid, N., Jafri, M. R., Ahmed, S., Jamil, M., Khan, Z. A., Qasim, U., & Al-Saleh, S. S. (2015). Delay-sensitive routing schemes for underwater acoustic sensor networks. International Journal of Distributed Sensor Networks, 11(3), 532676.

    Article  Google Scholar 

  38. Latif, G., Javaid, N., Khan, A., Fatima, A., Jatta, L., & Khan, W. (2019). Efficient routing in geographic and opportunistic routing for underwater WSNs (pp. 86–95). Cham: Springer International Publishing.

    Google Scholar 

  39. Hindu, S. K., Hyder, W., Luque-Nieto, M.-A., Poncela, J., & Otero, P. (2019). Self-organizing and scalable routing protocol (SOSRP) for underwater acoustic sensor networks. Sensors, 19(14), 3130.

    Article  Google Scholar 

  40. Ali, T., Jung, L. T., & Faye, I. (2014). End-to-end delay and energy efficient routing protocol for underwater wireless sensor networks. Wireless Personal Communications, 79(1), 339–361.

    Article  Google Scholar 

  41. Wahid, A., Lee, S., Kim, D., & Lim, K.-S. (2014). MRP: A localization-free multi-layered routing protocol for underwater wireless sensor networks. Wireless Personal Communications, 77(4), 2997–3012.

    Article  Google Scholar 

  42. Gul, S., Jokhio, S. H., Jokhio, I. A. (2018) Light-weight depth-based routing for underwater wireless sensor network (pp. 1–7).

  43. Zhang, Y., Xiong, W., Han, D., Chen, W., & Wang, J. (2016). Routing algorithm with uneven clustering for energy heterogeneous wireless sensor networks. Journal of Sensors. https://doi.org/10.1155/2016/7542907

    Google Scholar 

  44. Javaid, N., Ahmad, Z., Sher, A., Wadud, Z., Khan, Z. A., & Ahmed, S. H. (2019). Fair energy management with void hole avoidance in intelligent heterogeneous underwater WSNs. Journal of Ambient Intelligence and Humanized Computing, 10(11), 4225–4241.

    Article  Google Scholar 

  45. Khan, M. T. R., Ahmed, S. H., Kim, D. (2018) AUV-assisted energy-efficient clustering in underwater wireless sensor networks (pp. 1–7).

  46. Xie, P., Cui, J.-H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks (pp. 1216–1221). Berlin: Springer.

    Google Scholar 

  47. Davies, V. A. (2000). Evaluating mobility models within an ad hoc network, Citeseer

  48. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.

    Article  Google Scholar 

  49. Xu, M., Liu, G., & Wu, H. (2014). An energy-efficient routing algorithm for underwater wireless sensor networks inspired by ultrasonic frogs. International Journal of Distributed Sensor Networks, 10(2), 351520.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, nor not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Soltanaghaei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorbakhsh, H., Soltanaghaei, M. EEGBRP: an energy-efficient grid-based routing protocol for underwater wireless sensor networks. Wireless Netw 28, 3477–3491 (2022). https://doi.org/10.1007/s11276-022-03016-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03016-7

Keywords

Navigation