Skip to main content

Advertisement

Log in

Dynamic voltage scaling based energy-minimized partial task offloading in fog networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the dynamic voltage scaling (DVS) technology, the terminal node (TN) can dynamically adjust its computational speed, thus providing a new way to save energy during task offloading in fog computing. Focusing on the scenario of one TN and multiple fog nodes (FNs), this paper proposed an Energy-Minimized Partial Task Offloading (EMPTO) scheme for the first time to reduce the overall energy consumption based on DVS technology. Firstly, by modeling the energy consumption and processing delay of task offloading, we formulated the problem of minimizing energy consumption. Then, using the variable substitution method, we transformed this energy minimization problem into a univariate optimization problem about the TN’s computational speed. By solving this problem, EMPTO gets the optimal TN’s computational speed, task offloading size between each pair of TN and FN, and the overall energy consumption. Finally, EMPTO selects the offloading scheme with the lowest overall energy consumption as the final scheme. Theoretical proof and simulation results show that EMPTO can achieve the minimum energy consumption by DVS technology under delay constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Yi, C., Huang, S., & Cai, J. (2021). Joint resource allocation for device-to-device communication assisted fog computing. IEEE Transactions on Mobile Computing, 20(3), 1076–1091. https://doi.org/10.1109/TMC.2019.2952354

    Article  Google Scholar 

  2. Martinez, I., Hafid, A. S., & Jarray, A. (2021). Design resource management, and evaluation of fog computing systems: A survey. IEEE Internet of Things Journal, 8(4), 2494–2516.

    Article  Google Scholar 

  3. Chiang, M., Ha, S., Risso, F., Zhang, T., & Chih-Lin, I. (2017). Clarifying fog computing and networking: 10 questions and answers. IEEE Communications Magazine, 55(4), 18–20.

    Article  Google Scholar 

  4. Fantacci, R., & Picano, B. (2020). Performance analysis of a delay constrained data offloading scheme in an integrated cloud-fog- edge computing system. IEEE Transactions on Vehicular Technology, 69(10), 12004–12014.

    Article  Google Scholar 

  5. Yu, Z., Gong, Y., Gong, S., & Guo, Y. (2020). Joint task offloading and resource allocation in UAV-enabled mobile edge computing. IEEE Internet of Things Journal, 7(4), 3147–3159. https://doi.org/10.1109/JIOT.2020.2965898

    Article  Google Scholar 

  6. Chang, Z., Liu, L., Guo, X., & Sheng, Q. (2021). Dynamic resource allocation and computation offloading for IoT fog computing system. IEEE Transactions on Industrial Informatics, 17(5), 3348–3357. https://doi.org/10.1109/TII.2020.2978946

    Article  Google Scholar 

  7. Mukherjee, M. (2020). Latency-driven parallel task data offloading in fog computing networks for industrial applications. IEEE Transactions on Industrial Informatics, 16(9), 6050–6058. https://doi.org/10.1109/TII.2019.2957129

    Article  Google Scholar 

  8. Wu, Q., Liu, H., Wang, R., Fan, P., Fan, Q., & Li, Z. (2020). Delay-sensitive task offloading in the 802.11p-based vehicular fog computing systems. IEEE Internet of Things Journal, 7(1), 773–785. https://doi.org/10.1109/JIOT.2019.2953047

    Article  Google Scholar 

  9. Kuang, Z., Li, L., Gao, J., Zhao, L., & Liu, A. (2019). Partial offloading scheduling and power allocation for mobile edge computing systems. IEEE Internet of Things Journal, 6(4), 6774–6785. https://doi.org/10.1109/JIOT.2019.2911455

    Article  Google Scholar 

  10. Ning, Z., Dong, P., Kong, X., & Xia, F. (2019). A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things. IEEE Internet of Things Journal, 6(3), 4804–4814. https://doi.org/10.1109/JIOT.2018.2868616

    Article  Google Scholar 

  11. Zhang, G., Shen, F., Yang, Y., Qian, H., & Yao, W. (2018, May). Fair task offloading among fog nodes in fog computing networks. In 2018 IEEE international conference on communications (ICC) (pp. 1-6). IEEE.

  12. Wang, Y., Sheng, M., Wang, X., Wang, L., & Li, J. (2016). Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Transactions on Communications, 64(10), 4268–4282.

    Google Scholar 

  13. Zhang, G., Shen, F., Zhang, Y., Yang, R., Yang, Y., & Jorswieck, E. A. (2018, October). Delay minimized task scheduling in fog-enabled IoT networks. In 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP) (pp. 1-6). IEEE.

  14. Shahryari, O.-K., Pedram, H., & Khajehvand, V. (2020). Mehdi Dehghan TakhtFooladi, Energy-Efficient and delay-guaranteed computation offloading for fog-based IoT networks. Computer Networks, 182, 107511. https://doi.org/10.1016/j.comnet.2020.107511

    Article  Google Scholar 

  15. Li, C., Tang, J., Zhang, Y., Yan, X., & Luo, Y. (2019). Energy efficient computation offloading for nonorthogonal multiple access assisted mobile edge computing with energy harvesting devices. Computer Networks, 164, 106890. https://doi.org/10.1016/j.comnet.2019.106890

    Article  Google Scholar 

  16. Zhang, J. (2018). Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet of Things Journal, 5(4), 2633–2645. https://doi.org/10.1109/JIOT.2017.2786343

    Article  Google Scholar 

  17. Diamanti, M., Charatsaris, P., Tsiropoulou, E. E., & Papavassiliou, S. (2022). Incentive mechanism and resource allocation for edge-fog networks driven by multi-dimensional contract and game theories. IEEE Open Journal of the Communications Society, 3, 435–452. https://doi.org/10.1109/OJCOMS.2022.3154536

    Article  Google Scholar 

  18. Zhang, G., Shen, F., Liu, Z., Yang, Y., Wang, K., & Zhou, M. (2019). FEMTO: Fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet Things Journal, 6(3), 4388–4400. https://doi.org/10.1109/JIOT.2018.2887229

    Article  Google Scholar 

  19. Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., & Shen, X. S. (2021). TOFFEE: task offloading and frequency scaling for energy efficiency of mobile devices in mobile edge computing. IEEE Transactions on Cloud Computing, 9(4), 1634–1644. https://doi.org/10.1109/TCC.2019.2923692

    Article  Google Scholar 

  20. Zhuang, Y., Li, X., Ji, H., & Zhang, H. (2019). Optimization of mobile MEC offloading with energy harvesting and dynamic voltage scaling. IEEE Wireless Communications and Networking Conference, 2019, 1–6. https://doi.org/10.1109/WCNC.2019.8885971

    Google Scholar 

  21. Li, S., Sun, W., Sun, Y., & Huo, Y. (2021). Energy-efficient task offloading using dynamic voltage scaling in mobile edge computing. IEEE Transactions on Network Science and Engineering, 8(1), 588–598. https://doi.org/10.1109/TNSE.2020.3046014

    Article  MathSciNet  Google Scholar 

  22. Wang, Y., Sheng, M., Wang, X., & Li, J. (2018). Cooperative dynamic voltage scaling and radio resource allocation for energy-efficient multiuser mobile edge computing. In 2018 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.

  23. Qin, M. (2021). Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks. IEEE Internet of Things Journal, 8(3), 1896–1907. https://doi.org/10.1109/JIOT.2020.3015970

    Article  Google Scholar 

  24. Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., & Wu, D. O. (2013). Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions on Wireless Communications, 12(9), 4569–4581. https://doi.org/10.1109/TWC.2013.072513.121842

    Article  Google Scholar 

  25. Yao, Y., Qin, Y., Feng, W., Li, P., Xiaorong, X., Xin, X., & Liang, X. (2021). KFTO: Kuhn-Munkres based fair task offloading in fog networks. Computer Networks, 195, 108031. https://doi.org/10.1016/j.comnet.2021.108131

    Article  Google Scholar 

  26. Yang, Y., Zhao, S., Zhang, W., Chen, Y., Luo, X., & Wang, J. (2018). DEBTS: Delay Energy Balanced Task Scheduling in Homogeneous Fog Networks. IEEE Internet of Things Journal, 5(3), 2094–2106. https://doi.org/10.1109/JIOT.2018.2823000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbiao Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The energy consumption of the TN to calculate a unit bit of data is expressed as:

$$E_{T}^{C} = k_{T} f_{T}^{ 2} \alpha$$
(23)

It is easy to know that \(E_{T}^{C}\) is a monotonically increasing function of the TN’s computational speed fT.

The delay generated by the TN calculating the unit bit of data is expressed as α/fT, which is a monotonically decreasing function of fT.

Therefore, when QT takes any value under the constraint of D <  = Dmax, we can always reduce the local computing energy consumption by adjusting fT so that DT = Dmax, thereby minimizing the overall energy consumption.

The above proves Proposition 1.

Appendix B

According to (2) and (10), the processing delay of Qi is rewritten as:

$$D_{i} = Q_{i} \left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right) = \left( {Q - \frac{{D_{\max } f_{T} }}{\alpha }} \right)\left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right)$$
(24)

To ensure that the optimization problem (8) is solvable, it needs to satisfy D ≤ Dmax. It has been proved in Proposition 1 that DT = Dmax, then Di ≤ Dmax must be satisfied:

$$D_{i} = \left( {Q - \frac{{D_{\max } f_{T} }}{\alpha }} \right)\left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right) \le D_{\max }$$
(25)
$$\to \frac{Q}{{D_{\max } }} \le \frac{{f_{T} }}{\alpha } + \left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right)^{ - 1} \le \frac{{f_{T\max } }}{\alpha } + \left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right)^{ - 1}$$
(26)

The above proves Proposition 2.

Appendix C

To ensure that problem (8) is solvable, QT ≤ Q and Di ≤ Dmax should be satisfied.

According to QT ≤ Q, we have

$$Q_{T} = \frac{{D_{\max } f_{T} }}{\alpha } \le Q \to f_{T} \le \frac{\alpha Q}{{D_{\max } }}$$
(27)

According to Di ≤ Dmax, we have

$$D_{i} = \left( {Q - \frac{{D_{\max } f_{T} }}{\alpha }} \right)\left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right) \le D_{\max }$$
$$\to f_{T} \ge \alpha \left( {\frac{Q}{{D_{\max } }} - \left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right)^{ - 1} } \right)$$
(28)

We denote the upper and lower bounds of the effective value range of fT as \(\widetilde{{f_{T\max } }}\) and \(\widetilde{{f_{T\min } }}\). According to (27), (28) and \(0 \le f_{T} \le f_{T\max }\),\(\widetilde{{f_{T\max } }}\) and \(\widetilde{{f_{T\min } }}\) are expressed as:

$$\widetilde{{f_{T\max } }} = \min \left( {f_{T\max } ,\frac{\alpha Q}{{D_{\max } }}} \right)$$
(29)
$$\widetilde{{f_{T\min } }} = \max \left( {0,\alpha \left( {\frac{Q}{{D_{\max } }} - \left( {\frac{1}{{r_{i} }} + \frac{\alpha }{{f_{i} }}} \right)^{ - 1} } \right)} \right)$$
(30)

The above proves Proposition 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Yao, Y., Feng, W. et al. Dynamic voltage scaling based energy-minimized partial task offloading in fog networks. Wireless Netw 28, 3337–3347 (2022). https://doi.org/10.1007/s11276-022-03052-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03052-3

Keywords

Navigation