Skip to main content

Advertisement

Log in

DR-NET: a novel mobile anchor-assisted localization method based on the density of nodes distribution

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Considering the existing mobile anchor-assisted localization methods generally adopt a traverse strategy for the localization region, leading to an unnecessary increase in path length. The long path will cause long localization time and high energy consumption of mobile anchor. To reduce the long path of mobile anchor, this paper proposes a novel mobile anchor-assisted localization method based on the density of nodes distribution called Division of Regions Nested Equilateral Triangles path planning (DR-NET). Firstly, DR-NET divides the localization region into several small regions according to the density of nodes distribution, thereby reducing the movement in the distribution region of sensorless nodes. Secondly, the shortest path algorithm and genetic algorithm are used to calculate the shortest path of the inter-region and intra-region. Finally, the mobile anchor moves according to the planned path and assists the unknown nodes to locate. Compared with the existing classical methods LMAT, MAALRH, H-Curves and M-Curves, a series of experimental results demonstrate that DR-NET can effectively reduce the path length and energy consumption of mobile anchor by 8.56–30.66%, 4.26–28.59%, respectively. To further verify the validity and adaptability of DR-NET, we conduct experiments on localization regions with different shapes, areas, deployment strategies of nodes and structure types of nodes. The results show that DR-NET still maintains high stability in path length and localization success ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Larbi-Mezeghrane, W., Larbi, A., Bouallouche-Medjkoune, L., & Aissani, D. (2021). Geometric and decentralized approach for localization in wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12(2), 1679–1691.

    Article  Google Scholar 

  2. Krieg, J.-G., Jakllari, G., Toma, H., & Beylot, A.-L. (2018). Unlocking the smartphone’s sensors for smart city parking. Pervasive and Mobile Computing., 43, 78–95.

  3. Xu, C., Wang, X., Duan, S., & Wan, J. (2021). Spatial-temporal constrained particle filter for cooperative target tracking. Information Sciences, 564(5), 102913.

    Google Scholar 

  4. Olatinwo, S. O., & Joubert, T.-H. (2020). Energy efficiency maximization in a wireless powered IoT sensor network for water quality monitoring. Computer Networks, 176, 107237.

    Article  Google Scholar 

  5. Alhmiedat, T., Taleb, A. A., & Bsoul, M. (2012). A study on threats detection and tracking systems for military applications using WSNs. International Journal of Computer Applications, 40(15), 12–18.

    Article  Google Scholar 

  6. Bauwens, J., Macoir, N., Giannoulis, S., Moerman, I., & De Poorter, E. (2021). UWB-MAC: MAC protocol for UWB localization using ultra-low power anchor nodes. Ad Hoc Networks, 123, 102637.

    Article  Google Scholar 

  7. Su, R., Pang, X., Gong, Z., Li, C., Tao, X., & Jiang, F. (2021). A mobile node assisted localization system for wireless sensor networks. In 2021 International wireless communications and mobile computing (IWCMC)(pp. 1716–1720). IEEE.

  8. Han, G., Jiang, J., Zhang, C., Duong, T., Guizani, M., & Karagiannidis, G. K. (2016). A survey on mobile anchor node assisted localization in wireless sensor networks. IEEE Communications Surveys and Tutorials, 18(3), 2220–2243.

    Article  Google Scholar 

  9. Sabale, K., & Mini, S. (2021). Localization in wireless sensor networks with mobile anchor node path planning mechanism. Information Sciences, 579, 648–666.

    Article  MathSciNet  Google Scholar 

  10. Erdemir, E., & Tuncer, T. E. (2018). Path planning for mobile-anchor based wireless sensor network localization: Static and dynamic schemes. Ad Hoc Networks, 77, 1–10.

    Article  Google Scholar 

  11. Yildiz, D., & Karagöl, S. (2021). Comparison of Some Static Path Planning Models Localization Performance in Obstacle-Presence Environment. Avrupa Bilim ve Teknoloji Dergisi, 5, 438–446.

    Google Scholar 

  12. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile Computing, 1996, 153–181.

    Article  Google Scholar 

  13. Erdemir, E. N., & Tuncer, T. E. (2017). An adaptive path planning algorithm for mobile-anchor based wireless sensor networks, In Proceedings of the 25th signal processing and communications applications conference (pp. 1–4). IEEE.

  14. Rezazadeh, J., Moradi, M., Ismail, A. S., & Dutkiewicz, E. (2014). Superior path planning mechanism for mobile beacon-assisted localization in wireless sensor networks. IEEE Sensors Journal, 14(9), 3052–3064.

    Article  Google Scholar 

  15. Kannadasan, K., Edla, D. R., Kongara, M. C., & Kuppili, V. (2020). M-curves path planning model for mobile anchor node and localization of sensor nodes using dolphin swarm algorithm. Wireless Networks, 26(4), 2769–2783.

    Article  Google Scholar 

  16. Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13), 2577–2592.

    Article  Google Scholar 

  17. Panda, M., & Mishra, A. (2018). A survey of shortest-path algorithms. International Journal of Applied Engineering Research, 13(9), 6817–6820.

    Google Scholar 

  18. Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 1–16.

    Article  Google Scholar 

  19. Han, G., Xu, H., Jiang, J., Shu, L., Hara, T., & Nishio, S. (2013). Path planning using a mobile anchor node based on trilateration in wireless sensor networks. Wireless Communications and Mobile Computing, 13(14), 1324–1336.

    Article  Google Scholar 

  20. Han, G., Zhang, C., Lloret, J., Shu, L., & Rodrigues, J. J. (2014). A mobile anchor assisted localization algorithm based on regular hexagon in wireless sensor networks. The Scientific World Journal, 2014, 1–13.

    Google Scholar 

  21. Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589–2607.

    Article  Google Scholar 

  22. Han, G., Xu, H., Duong, T., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 52(4), 2419–2436.

    Article  Google Scholar 

  23. Halder, S., & Ghosal, A. (2016). A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, 82–94.

    Article  Google Scholar 

  24. Zafari, F., Gkelias, A., & Leung, K. K. (2019). A survey of indoor localization systems and technologies. IEEE Communications Surveys and Tutorials, 21(3), 2568–2599.

    Article  Google Scholar 

  25. Tomic, S., Beko, M., Dinis, R., & Bernardo, L. (2018). On target localization using combined RSS and AoA measurements. Sensors, 18(4), 1266–1291.

    Article  Google Scholar 

  26. Nguyen, C. L., Georgiou, O., & Suppakitpaisarn, V. (2018). Improved localization accuracy using machine learning: Predicting and refining RSS measurements. In Proceedings of the 2018 globecom workshops(pp. 1–7). IEEE.

  27. Reichenbach, F., Blumenthal, J., & Timmermann, D. (2006). Improved precision of coarse grained localization in wireless sensor networks. In Proceedings of 9th EUROMICRO conference on digital system design (pp. 630–640). IEEE.

  28. Shang, Y., Ruml, W., Zhang, Y., & Fromherz, M. P. (2003). Localization from mere connectivity. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking and computing (pp. 201–212). ACM.

  29. Ma, Z., Liu, Y., & Shen, B. (2008). Distributed locating algorithm for wireless sensor networks-MDS-MAP(D). Journal on Communications, 29(6), 58–63.

    Google Scholar 

  30. Wen, T., Zhang, B., Hu, Y., & Long, Z. (2020). Research on MDS-MAP location algorithm based on Floyd’s shortest path. In Proceedings of the 2020 Chinese automation congress (pp. 5057–5060). IEEE.

  31. Niculescu, D., & Nath, B. (2003). Dv based positioning in ad hoc networks. Telecommunication Systems, 22(1), 267–280.

    Article  Google Scholar 

  32. Jia, Y., Zhang, K., & Zhao, L. (2020). Improved dv-hop location algorithm based on mobile anchor node and modified hop count for wireless sensor network. Journal of Electrical and Computer Engineering, 2020, 1–9.

    Article  Google Scholar 

  33. Zhang, J., Luo, S., & Fu, P. (2021). 3D-DVHop-ACR localization algorithm based on virtual force moving anchor nodes. Control and Decision, 36(10), 2409–2417.

    Google Scholar 

  34. Boukerche, A., Oliveira, H. A., Nakamura, E. F., & Loureiro, A. A. (2007). Localization systems for wireless sensor networks. IEEE Wireless Communications, 14(6), 6–12.

    Article  Google Scholar 

  35. Li, X. (2006). Rss-based location estimation with unknown pathloss model. IEEE Transactions on Wireless Communications, 5(12), 3626–3633.

    Article  Google Scholar 

  36. Lawrence, P., Sergey, B., Rajeev, M., & Terry, W. (1999). The pagerank citation ranking: Bringing order to the web. Stanford InfoLab, Technical Report (pp. 1–15).

  37. Chen, S. (2013). A users’ real-time influence algorithm of social network based on pagerank (pp. 1–12). Shanghai Jiao Tong University

  38. Han, G., Choi, D., & Lim, W. (2009). Reference node placement and selection algorithm based on trilateration for indoor sensor networks. Wireless Communications and Mobile Computing, 9(8), 1017–1027.

    Article  Google Scholar 

  39. CC1100 Chinese data manual. http://www.doczj.com/doc/a79b2f4bc850ad02de80413e-7.html

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Nos. 62172435, U1804263 and 61872449), Zhongyuan Science and Technology Innovation Leading Talent Project of China (No. 214200510019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Luo.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Luo, X., Ding, S. et al. DR-NET: a novel mobile anchor-assisted localization method based on the density of nodes distribution. Wireless Netw 28, 3431–3451 (2022). https://doi.org/10.1007/s11276-022-03056-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03056-z

Keywords

Navigation