Skip to main content

Advertisement

Log in

MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Mobile Edge Computing (MEC) has evolved into a key technology that can leverage resources of computing, storage and network deployed at the proximity of the Mobile Devices (MDs). How to offload delay-sensitive and energy-constraint tasks is of research importance. In this paper, considering time-correlated traffic and Virtual Machine (VM) repair, we come up with a method to evaluate the task offloading scheme in a MEC system. Applying a Markovian Arrival Process (MAP) to describe the task arrivals in a MEC system, the local computing offloading and the MEC offloading are modeled as a MAP/M/1 queue and a MAP/M/N/N+K queue with VM repair, respectively. By exploiting the matrix-geometric solution approach and the Gauss–Seidel approach, we give the average delay, the energy consumption level and computation resource availability. Next, we provide numerical results to investigate the influence of the offload rate on the response performance and the energy efficiency with different correlation coefficients and the influence of the repair rate and the service rate of a VM on the availability. In addition, an improved Sine and Cosine Algorithm (SCA) is developed to acquire the optimal offload rate with a delay-energy tradeoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Shakarami, A., Ghobaei-Arani, M., Masdari, M., & Hosseinzadeh, M. (2020). A survey on the computation offloading approaches in mobile edge/cloud computing environment: A stochastic-based perspective. Journal of Grid Computing, 18(4), 639–671. https://doi.org/10.1007/s10723-020-09530-2

    Article  Google Scholar 

  2. Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2021). Security of Internet of Things based on cryptographic algorithms: A survey. Wireless Networks, 27(2), 1515–1555. https://doi.org/10.1007/s11276-020-02535-5

    Article  Google Scholar 

  3. Gao, H., Qiu, B., Duran Barroso, R. J., Hussain, W., Xu, Y., & Wang, X. (2022). TSMAE: A novel anomaly detection approach for Internet of things time series data using memory-augmented autoencoder. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/tnse.2022.3163144

    Article  Google Scholar 

  4. Israr, A., Yang, Q., Li, W., & Zomaya, A. Y. (2021). Renewable energy powered sustainable 5G network infrastructure: Opportunities, challenges and perspectives. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2020.102910

    Article  Google Scholar 

  5. Ma, X., Zhao, Y., Zhang, L., Wang, H., & Peng, L. (2013). When mobile terminals meet the cloud: Computation offloading as the bridge. IEEE Network, 27(5), 28–33. https://doi.org/10.1109/MNET.2013.6616112

    Article  Google Scholar 

  6. Gao, H., Huang, W., Liu, T., Yin, Y., & Li, Y. (2022). PPO2: Location privacy-oriented task offloading to edge computing using reinforcement learning for intelligent autonomous transport systems. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2022.3169421

    Article  Google Scholar 

  7. Li, C., Cai, Q., & Luo, Y. (2021). Multi-edge collaborative offloading and energy threshold-based task migration in mobile edge computing environment. Wireless Networks, 27(7), 4903–4928. https://doi.org/10.1007/s11276-021-02776-y

    Article  Google Scholar 

  8. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys and Tutorials, 19(4), 2322–2358. https://doi.org/10.1109/COMST.2017.2745201

    Article  Google Scholar 

  9. Tran, T. X., Hajisami, A., Pandey, P., & Pompili, D. (2017). Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine, 55(4), 54–61. https://doi.org/10.1109/MCOM.2017.1600863

    Article  Google Scholar 

  10. Ma, X., Xu, H., Gao, H., & Bian, M. (2021). Real-time multiple-workflow scheduling in cloud environments. IEEE Transactions on Network and Service Management, 18(4), 4002–4018. https://doi.org/10.1109/tnsm.2021.3125395

    Article  Google Scholar 

  11. Islam, A., Debnath, A., Ghose, M., & Chakraborty, S. (2021). A survey on task offloading in multi-access edge computing. Journal of Systems Architecture. https://doi.org/10.1016/j.sysarc.2021.102225

    Article  Google Scholar 

  12. Gao, H., Liu, C., Yin, Y., Xu, Y., & Li, Y. (2021). A hybrid approach to trust node assessment and management for VANETs cooperative data communication: Historical interaction perspective. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/tits.2021.3129458

    Article  Google Scholar 

  13. Shahryari, O. K., Pedram, H., Khajehvand, V., & TakhtFooladi, M. D. (2021). Energy and task completion time trade-off for task offloading in fog-enabled IoT networks. Pervasive and Mobile Computing. https://doi.org/10.1016/j.pmcj.2021.101395

    Article  Google Scholar 

  14. Zhou, Y., Yeoh, P. L., Pan, C., Wang, K., & Elkashlan, M. (2020). Offloading optimization for low-latency secure mobile edge computing systems. IEEE Wireless Communications Letters, 9(4), 480–484. https://doi.org/10.1109/LWC.2019.2959579

    Article  Google Scholar 

  15. Sun, W., Zhang, H., Wang, R., & Zhang, Y. (2020). Reducing offloading latency for digital twin edge networks in 6G. IEEE Transactions on Vehicular Technology, 69(10), 12240–12251. https://doi.org/10.1109/TVT.2020.3018817

    Article  Google Scholar 

  16. Zhang, X., Pal, A., & Debroy, S. (2020). Deep reinforcement learning based energy-efficient task offloading for secondary mobile edge systems. In Proceedings of 2020 IEEE 45th LCN symposium on emerging topics in networking (LCN symposium), Sydney, Australia (pp. 48–59). https://doi.org/10.1109/lcnsymposium50271.2020.9363256

  17. Chen, X., & Liu, G. (2021). Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networks. IEEE Internet of Things Journal, 8(13), 10843–10856. https://doi.org/10.1109/JIOT.2021.3050804

    Article  Google Scholar 

  18. Busacca, F., Faraci, G., Grasso, C., Palazzo, S., & Schembra, G. (2021). Designing a multi-layer edge-computing platform for energy-efficient and delay-aware offloading in vehicular networks. Computer Networks. https://doi.org/10.1016/j.comnet.2021.108330

    Article  Google Scholar 

  19. Yadav, R., Zhang, W., Kaiwartya, O., Song, H., & Yu, S. (2020). Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing. IEEE Transactions on Vehicular Technology, 69(12), 14198–14211. https://doi.org/10.1109/TVT.2020.3040596

    Article  Google Scholar 

  20. Mao, S., Leng, S., Maharjan, S., & Yan, Z. (2020). Energy efficiency and delay tradeoff for wireless powered mobile-edge computing systems with multi-access schemes. IEEE Transactions on Wireless Communications, 19(3), 1855–1867. https://doi.org/10.1109/TWC.2019.2959300

    Article  Google Scholar 

  21. Liu, L., Chang, Z., & Guo, X. (2018). Socially aware dynamic computation offloading scheme for fog computing system with energy harvesting devices. IEEE Internet of Things Journal, 5(3), 1869–1879. https://doi.org/10.1109/JIOT.2017.2780236

    Article  Google Scholar 

  22. Li, K. (2019). Computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing. IEEE Transactions on Sustainable Computing. https://doi.org/10.1109/TSUSC.2019.2904680

    Article  Google Scholar 

  23. Xue, J., Wang, Z., Zhang, Y., & Lu, W. (2020). Task allocation optimization scheme based on queuing theory for mobile edge computing in 5G heterogeneous networks. Mobile Information Systems. https://doi.org/10.1155/2020/1501403

    Article  Google Scholar 

  24. Li, W., & Jin, S. (2021). Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity. Journal of Supercomputing, 77, 12486–12507. https://doi.org/10.1007/s11227-021-03781-w

    Article  Google Scholar 

  25. Paxson, V., & Floyd, S. (1995). Wide-area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking, 3(3), 226–244. https://doi.org/10.1109/90.392383

    Article  Google Scholar 

  26. Mitchell, K., & van de Liefvoort, A. (2003). Approximation models of feed-forward G/G/1/N queueing networks with correlated arrivals. Performance Evaluation, 51(2–4), 137–152. https://doi.org/10.1016/s0166-5316(02)00095-0

    Article  Google Scholar 

  27. Neely, M. J. (2009). Delay analysis for maximal scheduling with flow control in wireless networks with bursty traffic. IEEE/ACM Transactions on Networking, 17(4), 1146–1159. https://doi.org/10.1109/tnet.2008.2008232

    Article  Google Scholar 

  28. Vishnevskii, V. M., & Dudin, A. N. (2017). Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks. Automation and Remote Control, 78(8), 1361–1403. https://doi.org/10.1134/s000511791708001x

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, J., Okamura, H., Li, L., & Dohi, T. (2017). A comprehensive evaluation of software rejuvenation policies for transaction systems with Markovian arrivals. IEEE Transactions on Reliability, 66(4), 1157–1177. https://doi.org/10.1109/tr.2017.2741526

    Article  Google Scholar 

  30. Rezaei, F., Momeni, A., & Khalaj, B. H. (2018). Delay analysis of network coding in multicast networks with Markovian arrival processes: A practical framework in cache-enabled networks. IEEE Transactions on Vehicular Technology, 67(8), 7577–7584. https://doi.org/10.1109/tvt.2018.2830111

    Article  Google Scholar 

  31. Klemm, A., Lindemann, C., & Lohmann, M. (2003). Modeling IP traffic using the batch Markovian arrival process. Performance Evaluation, 54(2), 149–173. https://doi.org/10.1016/s0166-5316(03)00067-1

    Article  MATH  Google Scholar 

  32. Zhang, Y., Feng, B., Quan, W., Li, G., Zhou, H., & Zhang, H. (2019). Theoretical analysis on edge computation offloading policies for IoT devices. IEEE Internet of Things Journal, 6(3), 4228–4241. https://doi.org/10.1109/jiot.2018.2875599

    Article  Google Scholar 

  33. Zhao, X., Chen, W., Lee, J., & Shroff, N. B. (2020). Delay-optimal and energy-efficient communications with Markovian arrivals. IEEE Transactions on Communications, 68(3), 1508–1523. https://doi.org/10.1109/tcomm.2019.2958325

    Article  Google Scholar 

  34. Cao, J., Feng, W., Ge, N., & Lu, J. (2021). Delay characterization of mobile-edge computing for 6G time-sensitive services. IEEE Internet of Things Journal, 8(5), 3758–3773. https://doi.org/10.1109/jiot.2020.3023933

    Article  Google Scholar 

  35. Zhuang, Z., Wang, J., Qi, Q., Liao, J., & Han, Z. (2021). Adaptive and robust routing with Lyapunov-based deep RL in MEC networks enabled by blockchains. IEEE Internet of Things Journal, 8(4), 2208–2225. https://doi.org/10.1109/jiot.2020.3034601

    Article  Google Scholar 

  36. He, Q. (2014). Fundamentals of matrix-analytic methods. Springer.

    Book  MATH  Google Scholar 

  37. Ibe, O. C. (1997). Markov Processes for Stochastic Modeling. Elsevier.

    MATH  Google Scholar 

  38. Zheng, J., Okamura, H., Dohi, T., & Trivedi, K. S. (2021). Quantitative security evaluation of intrusion tolerant systems with Markovian arrivals. IEEE Transactions on Reliability, 70(2), 547–562. https://doi.org/10.1109/tr.2020.3026570

    Article  Google Scholar 

  39. Jin, S., & Yue, W. (2021). Resource management and performance analysis of wireless communication networks. Springer.

    Book  Google Scholar 

  40. Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models: An algorithmic approach. Johns Hopkins University Press.

    MATH  Google Scholar 

  41. Fu, L., & Jin, S. (2021). Nash equilibrium and social optimization in cloud service systems with diverse users. Cluster Computing, 24(3), 2039–2050. https://doi.org/10.1007/s10586-021-03242-2

    Article  MathSciNet  Google Scholar 

  42. Stewart, W. J. (2009). Probability, Markov Chains, queues, and simulation: The mathematical basis of performance modeling. Princeton University Press.

    Book  MATH  Google Scholar 

  43. Usui, M., Niki, H., & Kohno, T. (1994). Adaptive Gauss–Seidel method for linear systems. International Journal of Computer Mathematics, 51(1–2), 119–125. https://doi.org/10.1080/00207169408804271i

    Article  MATH  Google Scholar 

  44. Little, J. D. C. (1961). A proof for the queuing formula: L = λW. Operations Research, 9(3), 383–387. https://doi.org/10.1287/opre.9.3.383

    Article  MathSciNet  Google Scholar 

  45. Theodore, S. R. (1996). Wireless communications: Principles and practice. Prentice Hall.

    MATH  Google Scholar 

  46. Barbarossa, S., Sardellitti, S., & Lorenzo, P. D. (2014). Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Processing Magazine, 31(6), 45–55. https://doi.org/10.1109/MSP.2014.2334709

    Article  Google Scholar 

  47. Wang, Y., Lin, X., & Massoud, P. (2013). A nested two stage game-based optimization framework in mobile cloud computing system. In Proceedings of 2013 IEEE seventh international symposium on service-oriented system engineering (SOSE 2013), San Francisco, USA (pp. 494–502). https://doi.org/10.1109/SOSE.2013.68

  48. Klimenok, V., Dudin, A., & Vishnevsky, V. (2020). Priority multi-server queueing system with heterogeneous customers. Mathematics. https://doi.org/10.3390/math8091501

    Article  MATH  Google Scholar 

  49. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China under Grant 61872311, Grant 61973261; in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant 22567626H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunfu Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Han, X. & Jin, S. MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wireless Netw 29, 47–68 (2023). https://doi.org/10.1007/s11276-022-03099-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03099-2

Keywords

Navigation