Skip to main content

Advertisement

Log in

Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challenges

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The advent of the Internet of Things (IoT), with thousands of connected, heterogeneous, and energy-constrained devices, enables new application domains and improves our everyday life. In many IoT applications, IoT devices are deployed in open environments, without physical access controls to them. Hence, they are exposed to various threats and malicious attacks that may dramatically impact the IoT network and cause physical or economical harm. Due to the limited energy storage of IoT devices, securing them against these threats incurs an additional energy consumption, thus, depleting their battery and reducing network lifetime. In the literature, there is a huge number of research works that propose solutions for either security or energy management for IoT networks. However, research on security solutions that offer a good trade-off between ensuring a good security level and reduced energy consumption is scarce. In addition to that, existing surveys focused either on IoT energy management or on IoT security but not on both of them. Motivated by the aforementioned points, we present in this article a survey based on a new approach that tackles jointly the problem of security and its impacts on the energy efficiency of IoT networks. We propose a taxonomy of recent solutions that reduce energy consumption while efficiently securing IoT networks. We consider context-aware security for IoT networks as a valid approach to secure IoT networks while reducing the overall energy consumption. We also present recent advances and new paradigms such as artificial intelligence and Software-Defined Networking (SDN) and we discuss how they can be used to develop more robust and energy-aware security solutions for IoT. Finally, we present a general model for the development of energy-efficient IoT security solutions which provides a good trade-off between ensuring a high level of security for IoT applications while reducing energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perera, C., Liu, C. H., Jayawardena, S., & Chen, M. (2014). A survey on Internet of Things from industrial market perspective. IEEE Access, 2, 1660–1679.

    Article  Google Scholar 

  2. Atlam, H. F., Walters, R., & Wills, G. (2018). Internet of Things: State-of-the-art, challenges, applications, and open issues. International Journal of Intelligent Computing Research (IJICR), 9(3), 928–938.

    Article  Google Scholar 

  3. Almusaylim, Z. A., & Zaman, N. (2019). A review on smart home present state and challenges: Linked to context-awareness Internet of Things (IoT). Wireless Networks, 25(6), 3193–3204.

    Article  Google Scholar 

  4. Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: A contemporary survey. Wireless Personal Communications, 108(1), 363–388.

    Article  Google Scholar 

  5. Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., Atiquzzaman, M., & Niyato, D. (2021). A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. Journal of Network and Computer Applications, 187, 103107.

    Article  Google Scholar 

  6. Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of Things (IoT) and the Energy Sector. Energies, 13(2), 494.

    Article  Google Scholar 

  7. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  8. Javed, F., Afzal, M. K., Sharif, M., & Kim, B.-S. (2018). Internet of Things (IoT) operating systems support, networking technologies, applications, and challenges: A comparative review. IEEE Communications Surveys Tutorials, 20(3), 2062–2100.

    Article  Google Scholar 

  9. Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182–8201.

    Article  Google Scholar 

  10. Chatterjee, B., Cao, N., Raychowdhury, A., & Sen, S. (2019). Context-aware intelligence in resource-constrained IoT nodes: Opportunities and challenges. IEEE Design Test, 36(2), 7–40.

    Article  Google Scholar 

  11. de Matos, E., Tiburski, R. T., Amaral, L. A., & Hessel, F. (2018). Providing context-aware security for IoT environments through context sharing feature. In 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE), (pp. 1711–1715).

  12. Kreutz, D., Ramos, F. M. V., Veríssimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.

    Article  Google Scholar 

  13. Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M. M., Biswas, S., et al. (2020). Survey of network virtualization techniques for Internet of Things using SDN and NFV. ACM Computing Surveys, 53(2), 35:1-35:40.

    Google Scholar 

  14. Molina Zarca, A., Bernabe, J. B., Trapero, R., Rivera, D., Villalobos, J., Skarmeta, A., et al. (2019). Security management architecture for NFV/SDN-aware IoT systems. IEEE Internet of Things Journal, 6(5), 8005–8020.

    Article  Google Scholar 

  15. Marino, F., Maggiani, L., Nao, L., Pagano, P., & Petracca, M. (2017). Towards softwarization in the IoT: Integration and evaluation of t-res in the oneM2M architecture. In 2017 IEEE conference on network softwarization (NetSoft), (pp. 1–5).

  16. Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine learning in IoT security: Current solutions and future challenges. IEEE Communications Surveys Tutorials, 22(3), 1686–1721 (thirdquarter).

    Article  Google Scholar 

  17. Al-Garadi, M. A., Mohamed, A., Al-Ali, A. K., Du, X., Ali, I., & Guizani, M. (2020). A survey of machine and deep learning methods for Internet of Things (IoT) security. IEEE Communications Surveys Tutorials, 22(3), 1646–1685 (thirdquarter).

    Article  Google Scholar 

  18. Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based solutions for security of Internet of Things (IoT): A survey. Journal of Network and Computer Applications, 161, 102630.

    Article  Google Scholar 

  19. Sah, D. K., & Amgoth, T. (2020). Renewable energy harvesting schemes in wireless sensor networks: A survey. Information Fusion, 63, 223–247.

    Article  Google Scholar 

  20. Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A top-down survey. Computer Networks, 141, 199–221.

    Article  Google Scholar 

  21. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access, 7, 82721–82743.

    Article  Google Scholar 

  22. Alharby, S., Harris, N., Weddell, A., & Reeve, J. (2018). The security trade-offs in resource constrained nodes for IoT application. International Journal of Electronics and Communication Engineering, 12(1), 9.

    Google Scholar 

  23. Said, O., Al-Makhadmeh, Z., & Tolba, A. (2020). EMS: An energy management scheme for green IoT environments. IEEE Access, 8, 44983–44998.

    Article  Google Scholar 

  24. Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy management for the Internet of Things in smart cities. IEEE Communications Magazine, 55(1), 84–91.

    Article  Google Scholar 

  25. Abid, K., Jaber, G., Lakhlef, H., Lounis, A., & Bouabdallah, A. (2020). An energy efficient architecture of self-sustainable WSN based on energy harvesting and wireless charging with consideration of deployment cost. In Proceedings of the 16th ACM symposium on QoS and security for wireless and mobile networks, Q2SWinet ’20 (pp. 109–114). Association for Computing Machinery.

  26. Sanislav, T., Dan Mois, G., Zeadally, S., & Folea, S. C. (2021). Energy harvesting techniques for Internet of Things (IoT). IEEE Access, 9, 39530–39549.

    Article  Google Scholar 

  27. Sharma, H., Haque, A., & Jaffery, Z. A. (2018). Solar energy harvesting wireless sensor network nodes: A survey. Journal of Renewable and Sustainable Energy, 10(2), 023704.

    Article  Google Scholar 

  28. Mishra, D., De, S., Jana, S., Basagni, S., Chowdhury, K., & Heinzelman, W. (2015). Smart RF energy harvesting communications: Challenges and opportunities. IEEE Communications Magazine, 53(4), 70–78.

    Article  Google Scholar 

  29. Curry, J., & Harris, N. (2019). Powering the environmental Internet of Things. Sensors, 19(8), 1940.

    Article  Google Scholar 

  30. Adila, A. S., Husam, A., & Husi, G. (2018). Towards the self-powered Internet of Things (IoT) by energy harvesting: Trends and technologies for green IoT. In 2018 2nd international symposium on small-scale intelligent manufacturing systems (SIMS) (pp. 1–5).

  31. Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.

    Article  Google Scholar 

  32. Tedeschi, P., Sciancalepore, S., & Di Pietro, R. (2020). Security in energy harvesting networks: A survey of current solutions and research challenges. IEEE Communications Surveys Tutorials, 22(4), 2658–2693 (Fourthquarter).

    Article  Google Scholar 

  33. Qingqing, W., Zhang, G., Ng, D. W. K., Chen, W., & Schober, R. (2019). Generalized wireless-powered communications: When to activate wireless power transfer? IEEE Transactions on Vehicular Technology, 68(8), 8243–8248.

    Article  Google Scholar 

  34. Wang, C., Li, J., Yang, Y., & Ye, F. (2018). Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks. IEEE Transactions on Mobile Computing, 17(3), 560–576.

    Article  Google Scholar 

  35. Na, W., Park, J., Lee, C., Park, K., Kim, J., & Cho, S. (2018). Energy-efficient mobile charging for wireless power transfer in Internet of Things networks. IEEE Internet of Things Journal, 5(1), 79–92.

    Article  Google Scholar 

  36. Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Malebary, S. J., Rahim, S., & Sahar, G. (2021). Energy-efficient tour optimization of wireless mobile chargers for rechargeable sensor networks. IEEE Systems Journal, 15(1), 27–36.

    Article  Google Scholar 

  37. Lin, C., Zhou, Y., Dai, H., Deng, J., & Wu, G. (2018). MPF: Prolonging network lifetime of wireless rechargeable sensor networks by mixing partial charge and full charge. In 2018 15th annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 1–9).

  38. Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., & Ghani, N. (2019). Demystifying IoT security: An exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Communications Surveys Tutorials, 21(3), 2702–2733 (thirdquarter).

    Article  Google Scholar 

  39. Butun, I., Österberg, P., & Song, H. (2020). Security of the Internet of Things: Vulnerabilities, attacks, and countermeasures. IEEE Communications Surveys Tutorials, 22(1), 616–644 (Firstquarter).

    Article  Google Scholar 

  40. Nguyen, V.-L., Lin, P.-C., & Hwang, R.-H. (2019). Energy depletion attacks in low power wireless networks. IEEE Access, 7, 51915–51932.

    Article  Google Scholar 

  41. Noor, M. M., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148, 283–294.

    Article  Google Scholar 

  42. Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications, 169, 102763.

    Article  Google Scholar 

  43. Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2021). Security of Internet of Things based on cryptographic algorithms: A survey. Wireless Networks, 27(2), 1515–1555.

    Article  Google Scholar 

  44. Ferrag, M. A., Shu, L., Yang, X., Derhab, A., & Maglaras, L. (2020). Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges. IEEE Access, 8, 32031–32053.

    Article  Google Scholar 

  45. Szymanski, T. H. (2017). Security and privacy for a green Internet of Things. IT Professional, 19(5), 34–41.

    Article  Google Scholar 

  46. Qin, Z., Denker, G., Giannelli, C., Bellavista, P., & Venkatasubramanian, N. (2014). A software defined networking architecture for the Internet-of-Things. In 2014 IEEE Network Operations and Management Symposium (NOMS) (pp. 1–9).

  47. Wan, Y., Xu, K., Xue, G., & Wang, F. (2020). IoTArgos: A multi-layer security monitoring system for Internet-of-Things in smart homes. In IEEE INFOCOM 2020: IEEE conference on computer communications (pp. 874–883).

  48. Tan, X., Shaojing, S., Zuo, Z., Guo, X., & Sun, X. (2019). Intrusion detection of UAVs based on the deep belief network optimized by PSO. Sensors, 19(24), 5529.

    Article  Google Scholar 

  49. Shahid, M. R., Blanc, G., Zhang, Z., & Debar, H.. (2019). Anomalous communications detection in IoT networks using sparse autoencoders. In 2019 IEEE 18th international symposium on network computing and applications (NCA) (pp. 1–5).

  50. Kulkarni, R. V., & Venayagamoorthy, G. K. (2009). Neural network based secure media access control protocol for wireless sensor networks. In 2009 International joint conference on neural networks (pp. 1680–1687).

  51. Vu, L., Nguyen, Q. U., Nguyen, D. N., Hoang, D. T., & Dutkiewicz, E. (2020). Deep transfer learning for IoT attack detection. IEEE Access, 8, 107335–107344.

    Article  Google Scholar 

  52. Yang, Y., Zheng, K., Chunhua, W., & Yang, Y. (2019). Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. Sensors, 19(11), 2528.

    Article  Google Scholar 

  53. Canbalaban, E., & Sen, S. (2020). A cross-layer intrusion detection system for RPL-based Internet of Things. In Ad-hoc, mobile, and wireless networks (pp. 214–227). Springer.

  54. Tu, S., Waqas, M., Rehman, S. U., Aamir, M., Rehman, O. U., Jianbiao, Z., & Chang, C. (2018). Security in fog computing: A novel technique to tackle an impersonation attack. IEEE Access, 6, 74993–75001.

    Article  Google Scholar 

  55. Uprety, A., & Rawat, D. B. (2021). Reinforcement learning for IoT security: A comprehensive survey. IEEE Internet of Things Journal, 8(11), 8693–8706.

    Article  Google Scholar 

  56. Zolotukhin, M., Kumar, S., & Hämäläinen, T. (2020). Reinforcement learning for attack mitigation in SDN-enabled networks. In 2020 6th IEEE conference on network softwarization (NetSoft) (pp. 282–286).

  57. Fan, Y., Li, Y., Zhan, M., Cui, H., & Zhang, Y. (2020). IoTDefender: A federated transfer learning intrusion detection framework for 5G IoT. In 2020 IEEE 14th international conference on big data science and engineering (BigDataSE) (pp. 88–95).

  58. Li, Z., Shahidehpour, M., & Liu, X. (2018). Cyber-secure decentralized energy management for IoT-enabled active distribution networks. Journal of Modern Power Systems and Clean Energy, 6(5), 900–917.

    Article  Google Scholar 

  59. Lin, H., Hu, J., Wang, X., Alhamid, M. F., & Piran, M. J. (2021). Toward secure data fusion in industrial IoT using transfer learning. IEEE Transactions on Industrial Informatics, 17(10), 7114–7122.

    Article  Google Scholar 

  60. de Assis, M. V. O., Carvalho, L. F., Rodrigues, J. J. P. C., Lloret, J., & Proença, M. L., Jr. (2020). Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Computers & Electrical Engineering, 86, 106738.

    Article  Google Scholar 

  61. García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134, 75–88.

    Article  Google Scholar 

  62. Thakor, V. A., Razzaque, M. A., & Khandaker, M. R. A. (2021). Lightweight cryptography algorithms for resource-constrained IoT devices: A review, comparison and research opportunities. IEEE Access, 9, 28177–28193.

    Article  Google Scholar 

  63. Mao, B., Kawamoto, Y., & Kato, N. (2020). AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things. IEEE Internet of Things Journal, 7(8), 7032–7042.

    Article  Google Scholar 

  64. de Meulenaer, G., Gosset, F., Standaert, F., & Pereira, O. (2008). On the energy cost of communication and cryptography in wireless sensor networks. In 2008 IEEE international conference on wireless and mobile computing, networking and communications (pp. 580–585).

  65. Schaumont, P., Yuce, B., Pabbuleti, K., & Mane, D. (2016). Secure authentication with energy-harvesting: A multi-dimensional balancing act. Sustainable Computing: Informatics and Systems, 12, 83–95.

    Google Scholar 

  66. Vračar, L. M., Stojanović, M. D., Stanimirović, A. S., & Prijić, Z. D. (2019). Influence of encryption algorithms on power consumption in energy harvesting systems. Journal of Sensors. https://doi.org/10.1155/2019/8520562.

    Article  Google Scholar 

  67. Wheeler, D. J., & Needham, R. M. (1994). TEA, a tiny encryption algorithm. In Fast software encryption (pp. 363–366). Springer.

  68. Needham, R. M., & Wheeler, D. J. (1997). Tea extensions. Report, Cambridge University.

  69. Brickell, E. F., Denning, D. E., Kent, S. T., Maher, D. P., & Tuchman, W. (1993). SKIPJACK review. Interim report: The Skipjack Algorithm.

  70. Maitra, S., & Yelamarthi, K. (2019). Rapidly deployable IoT architecture with data security: Implementation and experimental evaluation. Sensors, 19(11), 2484.

    Article  Google Scholar 

  71. Kane, L. E., Chen, J. J., Thomas, R., Liu, V., & Mckague, M. (2020). Security and performance in IoT: A balancing act. IEEE Access, 8, 121969–121986.

    Article  Google Scholar 

  72. Aerabi, E., Bohlouli, M., Livany, M. H. A., Fazeli, M., Papadimitriou, A., & Hely, D. (2020). Design space exploration for ultra-low-energy and secure IoT MCUs. ACM Transactions on Embedded Computing Systems, 19(3), 19:1-19:34.

    Article  Google Scholar 

  73. Girgenti, B., Perazzo, P., Vallati, C., Righetti, F., Dini, G., & Anastasi, G. (2019). On the feasibility of attribute-based encryption on constrained IoT devices for smart systems. In 2019 IEEE international conference on smart computing (SMARTCOMP) (pp. 225–232).

  74. Conceição, F., Oualha, N., & Zeghlache, D. (2018). An energy model for the IoT: Secure networking perspective. In 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–5).

  75. Lee, D.-H., & Lee, I.-Y. (2020). A lightweight authentication and key agreement schemes for IoT environments. Sensors, 20(18), 5350.

    Article  Google Scholar 

  76. Seok, B., Costa Sapalo Sicato, J., Erzhena, T., Xuan, C., Pan, Y., & Park, J. H. (2020). Secure D2D communication for 5G IoT network based on lightweight cryptography. Applied Sciences, 10(1), 217.

    Article  Google Scholar 

  77. Kommuru, K. J. S. R., Kadari, K. K. Y., & Alluri, B. K. R. (2018). A novel approach to balance the trade-off between security and energy consumption in WSN. In 2018 2nd international conference on micro-electronics and telecommunication engineering (ICMETE) (pp. 85–90).

  78. Ateniese, G., Bianchi, G., Capossele, A. T., Petrioli, C., & Spenza, D. (2017). HELIOS: Outsourcing of security operations in green wireless sensor networks. In 2017 IEEE 85th vehicular technology conference (VTC spring) (pp. 1–7).

  79. Suslowicz, C., Krishnan, A. S., & Schaumont, P. (2017). Optimizing cryptography in energy harvesting applications. In Proceedings of the 2017 workshop on attacks and solutions in hardware security, ASHES ’17 (pp. 17–26). Association for Computing Machinery.

  80. Fang, X., Yang, M., & Wenjia, W. (2018). Security cost aware data communication in low-power IoT sensors with energy harvesting. Sensors, 18(12), 4400.

    Article  Google Scholar 

  81. De Rango, F., Potrino, G., Tropea, M., & Fazio, P. (2020). Energy-aware dynamic Internet of Things security system based on elliptic curve cryptography and message queue telemetry transport protocol for mitigating replay attacks. Pervasive and Mobile Computing, 61, 101105.

    Article  Google Scholar 

  82. Mohd, B. J., Yousef, K. M. A., AlMajali, A., & Hayajneh, T. (2019). Power-aware adaptive encryption. In 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT) (pp. 711–716).

  83. Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q., & Choo, K.-K.R. (2020). An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Transactions on Services Computing, 13(4), 625–638.

    Article  Google Scholar 

  84. Farooq, U., Ul Hasan, N., Baig, I., & Shehzad, N. (2019). Efficient adaptive framework for securing the Internet of Things devices. EURASIP Journal on Wireless Communications and Networking, 2019(1), 210.

    Article  Google Scholar 

  85. Di Mauro, A. (2015). On the impact of energy harvesting on wireless sensor network security.

  86. Wang, B., Sun, Y., & Xiaodong, X. (2021). A scalable and energy-efficient anomaly detection scheme in wireless SDN-based mMTC networks for IoT. IEEE Internet of Things Journal, 8(3), 1388–1405.

    Article  Google Scholar 

  87. Conceicao, F. (2019). Network survival with energy harvesting: Secure cooperation and device assisted networking. Ph.D. thesis, Université Paris Saclay (COmUE).

  88. Hellaoui, H., Koudil, M., & Bouabdallah, A. (2020). Energy efficiency in security of 5G-based IoT: An end-to-end adaptive approach. IEEE Internet of Things Journal, 7(7), 6589–6602.

    Article  Google Scholar 

  89. Mohammed, T., Albeshri, A., Katib, I., & Mehmood, R. (2020). UbiPriSEQ: Deep reinforcement learning to manage privacy, security, energy, and QoS in 5G IoT HetNets. Applied Sciences, 10(20), 7120.

    Article  Google Scholar 

  90. Mao, B., Kawamoto, Y., Liu, J., & Kato, N. (2019). Harvesting and threat aware security configuration strategy for IEEE 802.15.4 based IoT networks. IEEE Communications Letters, 23(11), 2130–2134.

    Article  Google Scholar 

  91. Zhou, P., Zhong, G., Hu, M., Li, R., Yan, Q., Wang, K., et al. (2019). Privacy-preserving and residential context-aware online learning for IoT-enabled energy saving with big data support in smart home environment. IEEE Internet of Things Journal, 6(5), 7450–7468.

    Article  Google Scholar 

  92. Massad, M. A., & Alsaify, B. A. (2020). MQTTSec based on context-aware cryptographic selection algorithm (CASA) for resource-constrained IoT devices. In 2020 11th international conference on information and communication systems (ICICS) (pp. 349–354).

  93. Roy, S., Sankaran, S., Singh, P., & Sridhar, R. (2018). Modeling context-adaptive energy-aware security in mobile devices. In 2018 IEEE 43rd conference on local computer networks workshops (LCN workshops) (pp. 105–109).

  94. Asaithambi, A., Dutta, A., Rao, C., & Roy, S. (2020). Online context-adaptive energy-aware security allocation in mobile devices: A tale of two algorithms. In D. Van Hung, & M. D’Souza (Eds.) Distributed computing and internet technology (pp. 281–295). Springer.

  95. Hellaoui, H., Koudil, M., & Bouabdallah, A. (2017). Energy-efficient mechanisms in security of the internet of things: A survey. Computer Networks, 127, 173–189.

    Article  Google Scholar 

  96. Yousefpoor, M. S., Yousefpoor, E., Barati, H., Barati, A., Movaghar, A., & Hosseinzadeh, M. (2021). Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: A comprehensive review. Journal of Network and Computer Applications, 190, 103118.

    Article  Google Scholar 

  97. Loske, M., Rothe, L., & Gertler, D. G. (2019). Context-aware authentication: State-of-the-art evaluation and adaption to the IIoT. In 2019 IEEE 5th world forum on Internet of Things (WF-IoT) (pp. 64–69).

  98. Sikder, A. K., Babun, L., Aksu, H., & Uluagac, A. S. (2019). Aegis: A context-aware security framework for smart home systems. In Proceedings of the 35th annual computer security applications conference, ACSAC ’19 (pp. 28–41). Association for Computing Machinery.

  99. Hussain, Y., Zhiqiu, H., Akbar, M. A., Alsanad, A., Alsanad, A. A., Nawaz, A., et al. (2020). Context-aware trust and reputation model for fog-based IoT. IEEE Access, 8, 31622–31632.

    Article  Google Scholar 

  100. Schaumont, P. (2017). Security in the Internet of Things: A challenge of scale. In Design, automation test in Europe conference exhibition (DATE), 2017 (pp. 674–679).

  101. Kansal, A., Hsu, J., Srivastava, M., & Raqhunathan, V. (2006). Harvesting aware power management for sensor networks. In 2006 43rd ACM/IEEE design automation conference (pp. 651–656).

  102. Cammarano, A., Petrioli, C., & Spenza, D. (2012). Pro-energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks. In 2012 IEEE 9th international conference on mobile ad-hoc and sensor systems (MASS 2012) (pp. 75–83).

  103. Piorno, J. R., Bergonzini, C., Atienza, D., & Rosing, T. S. (2009). Prediction and management in energy harvested wireless sensor nodes. In 2009 1st international conference on wireless communication, vehicular technology, information theory and aerospace electronic systems technology (pp. 6–10).

  104. Kosunalp, S. (2016). A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access, 4, 5755–5763.

    Article  Google Scholar 

  105. Deb, M., & Roy, S. (2021). Enhanced-Pro: A New Enhanced Solar Energy Harvested Prediction Model for Wireless Sensor Networks. Wireless Personal Communications, 117(2), 1103–1121.

    Article  Google Scholar 

  106. Chang, S.-Y., Kumar, S. L. S., Hu, Y.-C., & Park, Y. (2019). Power-positive networking: Wireless-charging-based networking to protect energy against battery DoS attacks. ACM Transactions on Sensor Networks, 15(3), 27:1-27:25.

    Article  Google Scholar 

  107. Chen, D., Yang, W., Hu, J., Cai, Y., & Tang, X. (2018). Energy-efficient secure transmission design for the Internet of Things with an untrusted relay. IEEE Access, 6, 11862–11870.

    Article  Google Scholar 

  108. Lee, K., Hong, J.-P., & Lee, W. (2021). Deep learning framework for secure communication with an energy harvesting receiver. IEEE Transactions on Vehicular Technology, 70(10), 10121–10132.

    Article  Google Scholar 

  109. Turan, M. S., McKay, K., Chang, D., Calik, C., Bassham, L., Kang, J., & Kelsey, J. (2021). Status report on the second round of the NIST lightweight cryptography standardization process. Technical report, National Institute of Standards and Technology.

  110. Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., & Zhuang, W. (2019). Learning-based computation offloading for IoT devices with energy harvesting. IEEE Transactions on Vehicular Technology, 68(2), 1930–1941.

    Article  Google Scholar 

  111. Li, J., Hyun, J. H., & SamHa, D. (2018). A multi-source energy harvesting system to power microcontrollers for cryptography. In IECON 2018: 44th annual conference of the IEEE Industrial Electronics Society (pp. 901–906).

  112. Alharby, S., Harris, N., Weddell, A., & Reeve, J. (2018). Impact of duty cycle protocols on security cost of IoT. In 2018 9th international conference on information and communication systems (ICICS) (pp. 25–30).

  113. Rawat, D. B., & Reddy, S. R. (2017). Software defined networking architecture, security and energy efficiency: A survey. IEEE Communications Surveys Tutorials, 19(1), 325–346.

    Article  Google Scholar 

  114. Liu, X., Wei, Yu., Liang, F., Griffith, D., & Golmie, N. (2021). Toward deep transfer learning in industrial Internet of Things. IEEE Internet of Things Journal, 8(15), 12163–12175.

    Article  Google Scholar 

  115. De Donno, M., Malarski, K. M., Fafoutis, X., Dragoni, N., Petersen, M. N., Berger, M. S., & Ruepp, S. (2019). Sustainable security for Internet of Things. In 2019 international conference on smart applications, communications and networking (SmartNets) (pp. 1–4).

Download references

Acknowledgements

This work is co-funded by the multidisciplinary initiative “Mastery of Safe and Sustainable Technological Systems” of the Sorbonne University Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Mahamat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahamat, M., Jaber, G. & Bouabdallah, A. Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challenges. Wireless Netw 29, 787–808 (2023). https://doi.org/10.1007/s11276-022-03170-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03170-y

Keywords

Navigation