Skip to main content

Advertisement

Log in

Joint beamwidth and resource optimization in ultra-dense MmWave D2D communications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The symbiosis of millimeter wave (mmWave) transmission and Device-to-Device (D2D) communication has become a a promising candidate for temporary or spontaneous short-distance communications. Although the use of directional antennas in mmWave communications can effectively reduce the interference between users, as the network becomes much denser, the mmWave D2D communication network tends to be interference-limited rather than noise-limited. Significantly, the inter-user interference from the line-of-sight path should be carefully circumvented to boost the achievable rate further. We first identify that beamwidth, channel state, and resource allocation jointly affect the interference level and achievable rate. To effectively manage the interference, a joint beamwidth selection and resource optimization problem are established to maximize the sum rate. We propose a two-stage algorithm to solve this non-convex mixed integer programming with low complexity. First, a feasibility-aware particle swarm optimization based beamwidth selection algorithm is proposed to find the proper beamwidth. Second, a constrained concave-convex procedure based joint power optimization and time slots scheduling algorithm is proposed to facilitate the concurrent transmission and further improve the sum rate. Numerical results demonstrate that the proposed two-stage algorithm can effectively reduce interference and improve the sum rate with low complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hong, W., Jiang, Z. H., Yu, C., Hou, D., Wang, H., Guo, C., Hu, Y., Kuai, L., Yu, Y., Jiang, Z., Chen, Z., Chen, J., Yu, Z., Zhai, J., Zhang, N., Tian, L., Wu, F., Yang, G., Hao, Z.-C., & Zhou, J. Y. (2021). The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE Journal of Microwaves, 1(1), 101–122. https://doi.org/10.1109/JMW.2020.3035541

    Article  Google Scholar 

  2. Liu, R., Yu, G., Yuan, J., & Li, G. Y. (2021). Resource management for millimeter-wave ultra-reliable and low-latency communications. IEEE Transactions on Communications, 69(2), 1094–1108. https://doi.org/10.1109/TCOMM.2020.3036046

    Article  Google Scholar 

  3. Zhang, J., Huang, Y., Wang, J., Schober, R., & Yang, L. (2020). Power-efficient beam designs for millimeter wave communication systems. IEEE Transactions on Wireless Communications, 19(2), 1265–1279. https://doi.org/10.1109/TWC.2019.2952340

    Article  Google Scholar 

  4. Anamuro, C. V., Varsier, N., Schwoerer, J., & Lagrange, X. (2021). Distance-aware relay selection in an energy-efficient discovery protocol for 5G D2D communication. IEEE Transactions on Wireless Communications, 20(7), 4379–4391. https://doi.org/10.1109/TWC.2021.3058636

    Article  Google Scholar 

  5. Liu, G., Feng, W., Han, Z., & Jiang, W. (2019). Performance analysis and optimization of cooperative full-duplex D2D communication underlaying cellular networks. IEEE Transactions on Wireless Communications, 18(11), 5113–5127. https://doi.org/10.1109/TWC.2019.2932982

    Article  Google Scholar 

  6. Feng, M., Mao, S., & Jiang, T. (2022). Dealing with link blockage in mmWave networks: A combination of D2D relaying, multi-beam reflection, and handover. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2022.3152472

    Article  Google Scholar 

  7. Tlebaldiyeva, L., Maham, B., & Tsiftsis, T. A. (2020). Capacity analysis of device-to-device mmWave networks under transceiver distortion noise and imperfect CSI. IEEE Transactions on Vehicular Technology, 69(5), 5707–5712. https://doi.org/10.1109/TVT.2020.2983417

    Article  Google Scholar 

  8. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179. https://doi.org/10.1109/JSAC.2014.2328154

    Article  Google Scholar 

  9. Singh, S., Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2015). Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications, 33(10), 2196–2211. https://doi.org/10.1109/JSAC.2015.2435357

    Article  Google Scholar 

  10. Shokri-Ghadikolaei, H., & Fischione, C. (2015). The transitional behavior of interference in millimeter wave networks and its impact on medium access control. IEEE Transactions on Communications, 64(2), 723–740. https://doi.org/10.1109/TCOMM.2015.2509073

    Article  Google Scholar 

  11. Wang, R., Deng, N., & Wei, H. (2021). Towards a deep analysis of millimeter wave D2D underlaid cellular networks. IEEE Transactions on Communications, 69(10), 6545–6560. https://doi.org/10.1109/TCOMM.2021.3097743

    Article  Google Scholar 

  12. Wu, S., Atat, R., Mastronarde, N., & Liu, L. (2018). Improving the coverage and spectral efficiency of millimeter-wave cellular networks using device-to-device relays. IEEE Transactions on Communications, 66(5), 2251–2265. https://doi.org/10.1109/TCOMM.2017.2787990

    Article  Google Scholar 

  13. Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., & Vasilakos, A. V. (2015). Exploiting device-to-device communications in joint scheduling of access and backhaul for mmWave small cells. IEEE Journal on Selected Areas in Communications, 33(10), 2052–2069. https://doi.org/10.1109/JSAC.2015.2435273

    Article  Google Scholar 

  14. Solaiman, S., Nassef, L., & Fadel, E. (2021). User clustering and optimized power allocation for D2D communications at mmWave underlaying MIMO-NOMA cellular networks. IEEE Access, 9, 57726–57742. https://doi.org/10.1109/ACCESS.2021.3071992

    Article  Google Scholar 

  15. Sarma, S. S., & Hazra, R. (2020). Interference management for D2D communication in mmWave 5G network: an alternate offer bargaining game theory approach. In IEEE 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 202-207). https://doi.org/10.1109/SPIN48934.2020.9071419.

  16. Yu, C. M., Tala’t, M., Shen, L. H., & Feng, K. T. (2022). A novel fairness allocation strategy with minimum mainlobe interference for mmWave networks. IEEE Internet of Things Journal, 9(3), 2001–2013. https://doi.org/10.1109/JIOT.2021.3089165

    Article  Google Scholar 

  17. Zhang, X., Sarkar, S., Bhuyan, A., Kasera, S. K., & Ji, M. (2022). A non-cooperative game-based distributed beam scheduling framework for 5G millimeter-wave cellular networks. IEEE Transactions on Wireless Communications, 21(1), 489–504. https://doi.org/10.1109/TWC.2021.3097749

    Article  Google Scholar 

  18. Shokri-Ghadikolaei, H., Gkatzikis, L., & Fischione, C. (2015). Beam-searching and transmission scheduling in millimeter wave communications. In 2015 IEEE International Conference on Communications (ICC) (pp. 1292–1297). https://doi.org/10.1109/ICC.2015.7248501.

  19. Eshraghi, N., Shah-Mansouri, V., & Maham, B. (2017). Fair beamwidth selection and resource allocation for indoor millimeter-wave networks. In 2017 IEEE International Conference on Communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2017.7996623.

  20. Tagliaferri, D., Brambilla, M., Nicoli, M., & Spagnolini, U. (2021). Sensor-aided beamwidth and power control for next generation vehicular communications. IEEE Access, 9, 56301–56317. https://doi.org/10.1109/ACCESS.2021.3071726

    Article  Google Scholar 

  21. Perfecto, C., Del Ser, J., Ashraf, M. I., Bilbao, M. N., & Bennis, M. (2016). Beamwidth optimization in millimeter wave small cell networks with relay nodes: A swarm intelligence approach. In 22th European Wireless Conference (pp. 1–6).

  22. Zhang, Z., Wang, C., Yu, H., Wang, M., & Sun, S. (2018). Power optimization assisted interference management for D2D communications in mmWave networks. IEEE Access, 6, 50674–50682. https://doi.org/10.1109/ACCESS.2018.2869151

    Article  Google Scholar 

  23. Perfecto, C., Del Ser, J., & Bennis, M. (2017). Millimeter-wave V2V communications: Distributed association and beam alignment. IEEE Journal on Selected Areas in Communications, 35(9), 2148–2162. https://doi.org/10.1109/JSAC.2017.2719998

    Article  Google Scholar 

  24. Bahadori, N., Nabil, M., & Homaifar, A. (2021). Antenna beamwidth optimization in directional device-to-device communication using multi-agent deep reinforcement learning. IEEE Access, 9, 110601–110613. https://doi.org/10.1109/ACCESS.2021.3102230

    Article  Google Scholar 

  25. Bahadori, N., Nabil, M., Kelley, B., & Homaifar, A. (2021). Enabling content-centric device-to-device communication in the millimeter-wave band. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2021.3071468

    Article  Google Scholar 

  26. He, S., Xiong, S., Zhang, W., Yang, Y., Ren, J., & Huang, Y. (2022). GBLinks: GNN-based beam selection and link activation for ultra-dense D2D mmWave networks. IEEE Transactions on Communications, 70(5), 3451–3466. https://doi.org/10.1109/TCOMM.2022.3158646

    Article  Google Scholar 

  27. Swetha, G. D., & Murthy, G. R. (2017). Selective overlay mode operation for D2D communication in dense 5G cellular networks. In 2017 IEEE Symposium on Computers and Communications (ISCC) (pp. 704–709). https://doi.org/10.1109/ISCC.2017.8024610.

  28. Pei, Y., & Liang, Y. C. (2013). Resource allocation for device-to-device communications overlaying two-way cellular networks. IEEE Transactions on Wireless Communications, 12(7), 3611–3621. https://doi.org/10.1109/TWC.2013.061713.121956

    Article  Google Scholar 

  29. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107. https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  30. Xiao, Z., Zhu, L., Liu, Y., Yi, P., Zhang, R., Xia, X. G., & Schober, R. (2021). A survey on millimeter-wave beamforming enabled UAV communications and networking. IEEE Communications Surveys & Tutorials, 24(1), 557–610. https://doi.org/10.1109/COMST.2021.3124512

    Article  Google Scholar 

  31. Sim, G. H., Loch, A., Asadi, A., Mancuso, V., & Widmer, J. (2017). 5G millimeter-wave and D2D symbiosis: 60 GHz for proximity-based services. IEEE Wireless Communications, 24(4), 140–145. https://doi.org/10.1109/MWC.2017.1600098

    Article  Google Scholar 

  32. Amadori, P. V., & Masouros, C. (2015). Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2015.2431266

    Article  Google Scholar 

  33. Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., Karagiannidis, G. K., Bjornson, E., Yang, K., Chih-Lin, I., & Ghosh, A. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935. https://doi.org/10.1109/JSAC.2017.2719924

    Article  Google Scholar 

  34. Aggarwal, S., Ghoshal, M., Banerjee, P., Koutsonikolas, D., & Widmer, J. (2021). 802.11 ad in smartphones: Energy efficiency, spatial reuse, and impact on applications. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1–10). https://doi.org/10.1109/INFOCOM42981.2021.9488763.

  35. Nitsche, T., Bielsa, G., Tejado, I., Loch, A., & Widmer, J. (2015). Boon and bane of 60 GHz networks: Practical insights into beamforming, interference, and frame level operation. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies (pp. 1-13). https://doi.org/10.1145/2716281.2836102.

  36. Narayanan, A., Ramadan, E., Carpenter, J., Liu, Q., Liu, Y., Qian, F., & Zhang, Z. L. (2020). A first look at commercial 5G performance on smartphones. In Proceedings of The Web Conference 2020 (pp. 894–905). https://doi.org/10.1145/3366423.3380169.

  37. Li, B., Zhou, Z., Zou, W., Sun, X., & Du, G. (2013). On the efficient beam-forming training for 60GHz wireless personal area networks. IEEE Transactions on Wireless Communications, 12(2), 504–515. https://doi.org/10.1109/TWC.2012.121412.110419

    Article  Google Scholar 

  38. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2013). Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. In 2013 Information Theory and Applications Workshop (ITA) (pp. 1–5). https://doi.org/10.1109/ITA.2013.6522603.

  39. IEEE Std 802.15.3c (2009). IEEE standard for information technology telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements. In Part 15.3: Wireless medium access control and physical layer specifications for high rate wireless personal area networks, amendment 2: Millimeter-wave-based alternative physical layer extension.

  40. IEEE Std 802.11ad (2012). IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements. In Part 11: Wireless LAN medium access control and physical layer specifications amendment 3: Enhancements for very high throughput in the 60 GHz band.

  41. Wildman, J., Nardelli, P., Latva-Aho, M., & Weber, S. (2014). On the joint impact of beamwidth and orientation error on throughput in directional wireless poisson networks. IEEE Transactions on Wireless Communications, 13(12), 7072–7085. https://doi.org/10.1109/TWC.2014.2331055

    Article  Google Scholar 

  42. Singh, S., Mudumbai, R., & Madhow, U. (2011). Interference analysis for highly directional 60-GHz mesh networks: The case for rethinking medium access control. IEEE/ACM Transactions on Networking, 19(5), 1513–1527. https://doi.org/10.1109/TNET.2011.2122343

    Article  Google Scholar 

  43. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39–43). https://doi.org/10.1109/MHS.1995.494215.

  44. Sun, C., Zeng, J., Chu, S., Roddick, J. F., & Pan, J. (2011). Solving constrained optimization problems by an improved particle swarm optimization. In 2011 Second IEEE International Conference on Innovations in Bio-inspired Computing and Applications (pp. 124–128). https://doi.org/10.1109/IBICA.2011.35.

  45. Aguilera-Rueda, V. J., Ameca-Alducin, M. Y., Mezura-Montes, E., & Cruz-Ramirez, N. (2016). Particle Swarm Optimization with feasibility rules in constrained numerical optimization. A brief review. In 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (pp. 1–6). https://doi.org/10.1109/ROPEC.2016.7830581.

  46. Lipp, T., & Boyd, S. (2016). Variations and extension of the convex concave procedure. Optimization and Engineering, 17(2), 263–287.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61901375, in part by the China Postdoctoral Science Foundation under Grant 2019M663950XB, and in part by the Natural Science Basic Research Program of Shaanxi under Grant No.2021JM-384.

Author information

Authors and Affiliations

Authors

Contributions

XL designed the algorithm and made the theoretical derivation, XL, WZ and HS performed the simulation, XL and HS revised the manuscript and JP reviewed and supervised the manuscript.

Corresponding author

Correspondence to Xiaoya Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, W., Peng, J. et al. Joint beamwidth and resource optimization in ultra-dense MmWave D2D communications. Wireless Netw 29, 2093–2104 (2023). https://doi.org/10.1007/s11276-023-03266-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03266-z

Keywords

Navigation