Skip to main content

Advertisement

Log in

Optimal deployment of vehicular cloud computing systems with remote microclouds

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In vehicular cloud computing (VCC) systems, the vehicle cloud (VC) consists of computing resources for multiple vehicles to assist the remote cloud (RC) in making real-time decisions on driving vehicles, to improve road safety and driving comfort. The acquisition of additional cloud facilities to increase the capacity of VCC systems when processing intensive requests for cloud resources is costly. A recent approach uses multiple remote microclouds (RMCs) to assist RCs in processing requests because they are smaller and less costly than RCs. Therefore, this paper presents a VCC system with multiple RCs and RMCs, in which an algorithm for allocating request resources among VCs, RMCs, and RCs. Subsequently, this paper proposes an improved simulated annealing algorithm (ImSA) based on density of vehicles in a geographical area to deploy RCs and RMCs with the minimal deployment cost and response cost. For real applications, the accuracy and effectiveness of the proposed algorithm are evaluated on the basis of the real traffic data from three different areas (i.e., urban area, outskirts, and suburban area) in one week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vahdat-Nejad, H., Ramazani, A., Mohammadi, T., & Mansoor, W. (2016). A survey on context-aware vehicular network applications. Vehicular Communications, 3, 43–57.

    Article  Google Scholar 

  2. Santos, F., Aquino, A. L., Madeira, E. R., & Cabral, R. S. (2021). Temporal complex networks modeling applied to vehicular ad-hoc networks. Journal of Network and Computer Applications, 192, 103168.

    Article  Google Scholar 

  3. Wang, J., Cho, J., Lee, S., & Ma, T. (2011). Real time services for future cloud computing enabled vehicle networks. In Proceedings of the 2011 international conference on wireless communications and signal processing (WCSP), pp. 1–5.

  4. Lin, C.-C., Chin, H.-H., & Chen, W.-B. (2018). Balancing latency and cost in software-defined vehicular networks using genetic algorithm. Journal of Network and Computer Applications, 116, 35–41.

    Article  Google Scholar 

  5. Huang, X., Yu, R., Kang, J., He, Y., & Zhang, Y. (2017). Exploring mobile edge computing for 5G-enabled software defined vehicular networks. IEEE Wireless Communications, 24(6), 55–63.

    Article  Google Scholar 

  6. Ning, Z., Huang, J., & Wang, X. (2019). Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Communications, 26(1), 87–93.

    Article  Google Scholar 

  7. Wang, K., Yin, H., Quan, W., & Min, G. (2018). Enabling collaborative edge computing for software defined vehicular networks. IEEE Network, 32(5), 112–117.

    Article  Google Scholar 

  8. Gerla, M. (2012). Vehicular cloud computing. In Proceedings of the 2012 the 11th annual Mediterranean ad hoc networking workshop (med-hoc-net), pp. 152–155.

  9. Lee, E., Lee, E.-K., Gerla, M., & Oh, S. Y. (2014). Vehicular cloud networking: Architecture and design principles. IEEE Communications Magazine, 52(2), 148–155.

    Article  Google Scholar 

  10. Mekki, T., Jabri, I., Rachedi, A., & ben Jemaa, M. (2017). Vehicular cloud networks: Challenges, architectures, and future directions. Vehicular Communications, 9, 268–280.

    Article  Google Scholar 

  11. Jang, I., Choo, S., Kim, M., Pack, S., & Dan, G. (2017). The software-defined vehicular cloud: A new level of sharing the road. IEEE Vehicular Technology Magazine, 12(2), 78–88.

    Article  Google Scholar 

  12. Liu, J., Wan, J., Zeng, B., Wang, Q., Song, H., & Qiu, M. (2017). A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Communications Magazine, 55(7), 94–100.

    Article  Google Scholar 

  13. Sharma, S., & Kaul, A. (2018). A survey on Intrusion Detection Systems and Honeypot based proactive security mechanisms in VANETs and VANET Cloud. Vehicular Communications, 12, 138–164.

    Article  Google Scholar 

  14. Nkenyereye, L., Islam, S. M. R., Bilal, M., Abdullah-Al-Wadud, M., Alamri, A., & Nayyar, A. (2021). Secure crowd-sensing protocol for fog-based vehicular cloud. Future Generation Computer Systems, 120, 61–75.

    Article  Google Scholar 

  15. Liu, P., Zhang, Y., Fu, T., & Hu, J. (2021). Intelligent mobile edge caching for popular contents in vehicular cloud toward 6G. IEEE Transactions on Vehicular Technology, 70(6), 5265–5274.

    Article  Google Scholar 

  16. Zhang, K., Mao, Y., Leng, S., Maharjan, S., & Zhang, Y. (2017). Optimal delay constrained offloading for vehicular edge computing networks. In Proceedings of the 2017 IEEE international conference on communications (ICC), pp. 1–6.

  17. Zhang, K., Mao, Y., Leng, S., He, Y., & Zhang, Y. (2017). Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading. IEEE Vehicular Technology Magazine, 12(2), 36–44.

    Article  Google Scholar 

  18. Aujla, G. S., Chaudhary, R., Kumar, N., Rodrigues, J. J. P. C., & Vinel, A. (2017). Data offloading in 5G-enabled software-defined vehicular networks: A stackelberg-game-based approach. IEEE Communications Magazine, 55(8), 100–108.

    Article  Google Scholar 

  19. Zhang, W., Zhang, Z., & Chao, H.-C. (2017). Cooperative fog computing for dealing with big data in the internet of vehicles: Architecture and hierarchical resource management. IEEE Communications Magazine, 55(12), 60–67.

    Article  Google Scholar 

  20. Mustafa, A.M., Abubakr, O.M., Ahmadien, O., Ahmedin, A., & Mokhtar, B. (2017). Mobility prediction for efficient resources management in vehicular cloud computing. In Proceedings of the 2017 5th IEEE international conference on mobile cloud computing, services, and engineering (MobileCloud), pp. 53–59.

  21. Li, X., Ma, L., Shankaran, R., Xu, Y., & Orgun, M. A. (2019). Joint power control and resource allocation mode selection for safety-related v2x communication. IEEE Transactions on Vehicular Technology, 68(8), 7970–7986.

    Article  Google Scholar 

  22. Meneguette, R. I., & Boukerche, A. (2017). Servites: An efficient search and allocation resource protocol based on V2V communication for vehicular cloud. Computer Networks, 123, 104–118.

    Article  Google Scholar 

  23. Feng, J., Liu, Z., Wu, C., & Ji, Y. (2017). Ave: Autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Transactions on Vehicular Technology, 66(12), 10660–10675.

    Article  Google Scholar 

  24. Rui, L., Yang, S., Gao, Z., Li, W., Qiu, X., & Meng, L. (2022). Smart network maintenance in edge cloud computing environment: An allocation mechanism based on comprehensive reputation and regional prediction model. Journal of Network and Computer Applications, 198, 103298.

    Article  Google Scholar 

  25. Liang, H., Cai, L. X., Huang, D., Shen, X., & Peng, D. (2012). An SMDP-based service model for interdomain resource allocation in mobile cloud networks. IEEE Transactions on Vehicular Technology, 61(5), 2222–2232.

    Article  Google Scholar 

  26. Zheng, K., Meng, H., Chatzimisios, P., Lei, L., & Shen, X. (2015). An SMDP-based resource allocation in vehicular cloud computing systems. IEEE Transactions on Industrial Electronics, 62(12), 7920–7928.

    Article  Google Scholar 

  27. Yu, R., Zhang, Y., Gjessing, S., Xia, W., & Yang, K. (2013). Toward cloud-based vehicular networks with efficient resource management. IEEE Network, 27(5), 48–55.

    Article  Google Scholar 

  28. Zhang, H., Wang, Z., & Liu, K. (2020). V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks. China Communications, 17(5), 266–283.

    Article  Google Scholar 

  29. Shakarami, A., Shahidinejad, A., & Ghobaei-Arani, M. (2021). An autonomous computation offloading strategy in mobile edge computing: A deep learning-based hybrid approach. Journal of Network and Computer Applications, 178, 102974.

    Article  Google Scholar 

  30. Peng, F., & Cui, G. (2015). Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm. Applied Thermal Engineering, 78, 136–149.

    Article  Google Scholar 

  31. Lyden, S., & Haque, M. E. (2016). A simulated annealing global maximum power point tracking approach for PV modules under partial shading conditions. IEEE Transactions on Power Electronics, 31(6), 4171–4181.

    Article  Google Scholar 

  32. Chen, F., Gao, Z., Liu, Z., Huang, L., & Tang, Y. (2021). Code-based computation offloading in vehicular fog networks. In Proceedings of the 2021 international conference on communications, computing, cybersecurity, and informatics (CCCI), pp. 1–5.

  33. Fang, J., Li, K., Hu, J., Xu, X., Teng, Z., & Xiang, W. (2021). SAP: An IoT application module placement strategy based on simulated annealing algorithm in edge-cloud computing. Journal of Sensors, 2021, 1–12.

    Google Scholar 

  34. Attiya, I., Abd Elaziz, M., & Xiong, S. (2020). Job scheduling in cloud computing using a modified Harris hawks optimization and simulated annealing algorithm. Computational Intelligence and Neuroscience 2020.

  35. Zhang, Y.-W., Zhang, W.-M., Peng, K., Yan, D.-C., & Wu, Q.-L. (2021). A novel edge server selection method based on combined genetic algorithm and simulated annealing algorithm. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 62(1), 32–43.

    Article  Google Scholar 

  36. Yuan, H., & Zhou, M. (2021). Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems. IEEE Transactions on Automation Science and Engineering, 18(3), 1277–1287.

    Article  Google Scholar 

  37. Bi, J., Yuan, H., Duanmu, S., Zhou, M., & Abusorrah, A. (2021). Energy-optimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization. IEEE Internet of Things Journal, 8(5), 3774–3785.

    Article  Google Scholar 

  38. Leyva-Pupo, I., & Cervell’o-Pastor, C. (2022). Efficient solutions to the placement and chaining problem of User Plane Functions in 5G networks. Journal of Network and Computer Applications, 197, 103269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Cheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, C., Li, J., Feng, Q. et al. Optimal deployment of vehicular cloud computing systems with remote microclouds. Wireless Netw 30, 5305–5317 (2024). https://doi.org/10.1007/s11276-023-03268-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03268-x

Keywords