Skip to main content
Log in

Modeling age of information in a cooperative slotted Aloha network

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we study a slotted Aloha cooperative network where a source node and a relay node send status updates of two underlying stochastic processes to a common destination. Additionally, the relay node cooperates with the source by accepting its packets for further re-transmissions using probabilistic acceptance and relaying. We obtain the exact steady state distributions of Age of Information (AoI) and Peak AoI sequences of both nodes using Quasi-Birth-Death Markov chains. The analytical model is first validated by simulations and then used to obtain optimal cooperation policies when transmission probabilities are fixed. Subsequently, we study the more general problem of joint optimization of the transmission probabilities and cooperation level between the source and relay, with detailed numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Full duplex capability can also be considered for nodes as in [5].

References

  1. Kaul, S., Yates, R., & Gruteser, M. (2012). Real-time status: How often should one update? In Proceedings IEEE INFOCOM (pp. 2731–2735). https://doi.org/10.1109/INFCOM.2012.6195689

  2. Costa, M., Codreanu, M., & Ephremides, A. (2014). Age of information with packet management. In IEEE ISIT (pp. 1583–1587). https://doi.org/10.1109/ISIT.2014.6875100

  3. Yates, R. D., Sun, Y., Brown, D. R., Kaul, S. K., Modiano, E., & Ulukus, S. (2021). Age of information: An introduction and survey. IEEE JSAC, 39(5), 1183–1210. https://doi.org/10.1109/JSAC.2021.3065072

    Article  Google Scholar 

  4. Kosta, A., Pappas, N., & Angelakis, V. (2017). Age of information: A new concept, metric, and tool. Foundations and Trends® in Networking® 12(3), 162–259. https://doi.org/10.1561/1300000060

  5. Vaezi, K., & Ashtiani, F. (2020). Delay-optimal cooperation policy in a slotted Aloha full-duplex wireless network: Static approach. IEEE Systems Journal, 14(2), 2257–2268. https://doi.org/10.1109/JSYST.2019.2940605

    Article  Google Scholar 

  6. Li, B., Chen, H., Zhou, Y., & Li, Y (2020). Age-oriented opportunistic relaying in cooperative status update systems with stochastic arrivals. In IEEE conference on GLOBECOM (pp. 1–6). https://doi.org/10.1109/GLOBECOM42002.2020.9321986

  7. Moradian, M., & Dadlani, A. (2020). Age of information in scheduled wireless relay networks. In IEEE wireless communications and networking conference WCNC (pp. 1–6). https://doi.org/10.1109/WCNC45663.2020.9120608

  8. Vaezi, K., & Ashtiani, F. (2018). Delay-optimal static relaying policy in a slotted Aloha wireless network. In Iran workshop on communication and information theory (IWCIT) (pp. 1–6). https://doi.org/10.1109/IWCIT.2018.8405045

  9. Kaul, S., Gruteser, M., Rai, V., & Kenney, J. (2011). Minimizing age of information in vehicular networks. In 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 350–358). https://doi.org/10.1109/SAHCN.2011.5984917

  10. Costa, M., Codreanu, M., & Ephremides, A. (2016). On the age of information in status update systems with packet management. IEEE Transactions on Information Theory, 62(4), 1897–1910. https://doi.org/10.1109/TIT.2016.2533395

    Article  MathSciNet  MATH  Google Scholar 

  11. Inoue, Y., Masuyama, H., Takine, T., & Tanaka, T. (2019). A general formula for the stationary distribution of the age of information and its application to single-server queues. IEEE Transactions on Information Theory, 65(12), 8305–8324. https://doi.org/10.1109/TIT.2019.2938171

    Article  MathSciNet  MATH  Google Scholar 

  12. Akar, N., Doǧan, O., & Atay, E. U. (2020). Finding the exact distribution of (peak) age of information for queues of PH/PH/1/1 and M/PH/1/2 type. IEEE Transactions on Communications, 68(9), 5661–5672. https://doi.org/10.1109/TCOMM.2020.3002994

    Article  Google Scholar 

  13. Yates, R. D., & Kaul, S. K. (2019). The age of information: Real-time status updating by multiple sources. IEEE Transactions on Information Theory, 65(3), 1807–1827. https://doi.org/10.1109/TIT.2018.2871079

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, L., & Modiano, E. (2015). Optimizing age-of-information in a multi-class queueing system. In: IEEE international symposium on information theory ISIT (pp. 1681–1685). https://doi.org/10.1109/ISIT.2015.7282742

  15. Moltafet, M., Leinonen, M., & Codreanu, M. (2020). Average age of information for a multi-source M/M/1 queueing model with packet management. In: IEEE international symposium on information theory ISIT (pp. 1765–1769). https://doi.org/10.1109/ISIT44484.2020.9174099

  16. Tripathi, V., Talak, R., & Modiano, E. H. (2019). Age of information for discrete time queues. CoRR arXiv:1901.10463

  17. Kosta, A., Pappas, N., Ephremides, A., & Angelakis, V. (2021). The age of information in a discrete time queue: Stationary distribution and non-linear age mean analysis. IEEE Journal on Selected Areas in Communications, 39(5), 1352–1364. https://doi.org/10.1109/JSAC.2021.3065045

    Article  Google Scholar 

  18. Akar, N., & Doǧan, O. (2021). Discrete-time queueing model of age of information with multiple information sources. IEEE internet of things journal. https://doi.org/10.1109/JIOT.2021.3053768

  19. Bedewy, A. M., Sun, Y., & Shroff, N. B. (2017). Age-optimal information updates in multihop networks. In IEEE international symposium on information theory (ISIT) (pp. 576–580). https://doi.org/10.1109/ISIT.2017.8006593

  20. Li, B., Wang, Q., Chen, H., Zhou, Y., & Li, Y. (2021). Optimizing information freshness for cooperative IoT systems with stochastic arrivals. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3051417

  21. Vikhrova, O., Chiariotti, F., Soret, B., Araniti, G., Molinaro, A., & Popovski, P. (2020). Age of information in multi-hop networks with priorities. In IEEE global communications conference (GLOBECOM) (pp. 1–6). https://doi.org/10.1109/GLOBECOM42002.2020.9348175

  22. Atabay, D. C., Uysal, E., & Kaya, O. (2020). Improving age of information in random access channels. In IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 912–917). https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163053

  23. Munari, A. (2021). Modern random access: An age of information perspective on irregular repetition slotted Aloha. IEEE Transactions on Communications, 69(6), 3572–3585. https://doi.org/10.1109/TCOMM.2021.3060429

    Article  Google Scholar 

  24. Chen, X., Gatsis, K., Hassani, H., & Bidokhti, S. S. (2020). Age of information in random access channels. In IEEE international symposium on information theory (ISIT) (pp. 1770–1775). https://doi.org/10.1109/ISIT44484.2020.9174254

  25. Yavascan, O. T., & Uysal, E. (2021). Analysis of slotted Aloha with an age threshold. IEEE Journal on Selected Areas in Communications, 39(5), 1456–1470. https://doi.org/10.1109/JSAC.2021.3065043

    Article  Google Scholar 

  26. Chen, H., Gu, Y., & Liew, S.-C. (2020). Age-of-information dependent random access for massive IoT networks. In IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 930–935). https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162973

  27. Kadota, I., & Modiano, E. (2021). Age of information in random access networks with stochastic arrivals. In IEEE conference on computer communications (INFOCOM) (pp. 1–10). https://doi.org/10.1109/INFOCOM42981.2021.9488897

  28. Baiocchi, A., & Turcanu, I. (2021). Age of information of one-hop broadcast communications in a CSMA network. IEEE Communications Letters, 25(1), 294–298. https://doi.org/10.1109/LCOMM.2020.3022090

    Article  Google Scholar 

  29. Maatouk, A., Assaad, M., & Ephremides, A. (2020). On the age of information in a CSMA environment. IEEE/ACM Transactions on Networking, 28(2), 818–831. https://doi.org/10.1109/TNET.2020.2971350

    Article  Google Scholar 

  30. Neuts, M. F. (1995). Matrix-geometric solutions in stochastic models: An algorithmic approach. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  31. Akar, N., Oǧuz, N. C., & Sohraby, K. (2000) A novel computational method for solving finite QBD processes. Stochastic Models, 16(2), 273–311 . https://doi.org/10.1080/15326340008807588

  32. Latouche, G., & Ramaswami, V. (1993). A logarithmic reduction algorithm for quasi-birth-death processes. Journal of Applied Probability, 30(3), 650–674.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail Akar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaezi, K., Akar, N. & Karaşan, E. Modeling age of information in a cooperative slotted Aloha network. Wireless Netw 29, 2405–2417 (2023). https://doi.org/10.1007/s11276-023-03314-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03314-8

Keywords

Navigation