Skip to main content
Log in

Deep intelligent blockchain technology for securing IoT-based healthcare multimedia data

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nowadays, Internet of Things (IoT) based applications are widely used in different sectors because of their high mobility, low cost, and efficiency. However, the wide usage of these applications leads to various security issues. Several security applications exist for protecting multimedia data, but the appropriate confidential range is not met due to the multi-variant features. Hence, the novel hybrid Elman Neural-based Blowfish Blockchain Model has been developed in this article to secure IoT healthcare multimedia data. Here, the Elman network features provided continuous monitoring for predicting malicious events in the trained multimedia data. In addition, the crypto analysis was performed to enhance the confidentiality rate by hiding the raw data from third parties. The presented model was verified using python software. Furthermore, the robustness of the developed model is validated with a crypt analysis by launching attacks. Finally, the outcomes were estimated and compared with the existing techniques in terms of Encryption time, decryption time, execution time, error rate and confidential rate. Here, the evaluation database is the multimedia data, which is high in data size. Henceforth, the performance of the security model for securing multimedia data depends on time. Considering this, the time evaluation is measured in three classes: encryption, decryption and execution. The comparative analysis proves that the developed model achieved better results than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Nasr Esfahani, M., Shahgholi Ghahfarokhi, B., & Etemadi Borujeni, S. (2021). End-to-end privacy preserving scheme for IoT-based healthcare systems. Wireless Networks, 27, 4009–4037. https://doi.org/10.1007/s11276-021-02652-9

    Article  Google Scholar 

  2. Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2021). Security of internet of things based on cryptographic algorithms: A survey. Wireless Networks, 27, 1515–1555. https://doi.org/10.1007/s11276-020-02535-5

    Article  Google Scholar 

  3. Kore, A., & Patil, S. (2022). Cross layered cryptography based secure routing for IoT-enabled smart healthcare system. Wireless Networks, 28, 287–301. https://doi.org/10.1007/s11276-021-02850-5

    Article  Google Scholar 

  4. Othman, S. B., Almalki, F. A., Chakraborty, C., & Sakli, H. (2022). Privacy-preserving aware data aggregation for IoT-based healthcare with green computing technologies. Computers and Electrical Engineering, 101, 108025. https://doi.org/10.1016/j.compeleceng.2022.108025

    Article  Google Scholar 

  5. Masud, M., Gaba, G. S., Choudhary, K., Alroobaea, R., & Shamim Hossain, M. (2021). A robust and lightweight secure access scheme for cloud based E-healthcare services. Peer-to-peer Networking and Applications, 14(5), 3043–3057. https://doi.org/10.1007/s12083-021-01162-x

    Article  Google Scholar 

  6. Majeed, U., Khan, L. U., Yaqoob, I., Kazmi, S. M. A., Salah, K., & Hong, C. S. (2021). Blockchain for IoT-based smart cities: Recent advances, requirements, and future challenges. Journal of Network and Computer Applications, 181, 103007. https://doi.org/10.1016/j.jnca.2021.103007

    Article  Google Scholar 

  7. Saha, R., Kumar, G., Devgun, T., Buchanan, W., Thomas, R., Alazab, M., Kim, T. H., & Rodrigues, J. (2021). A blockchain framework in post-quantum decentralization. IEEE Transactions on Services Computing, 16(1), 1–12. https://doi.org/10.1109/TSC.2021.3116896

    Article  Google Scholar 

  8. Cherukupalli, N. L. S., & Katneni, V. (2021). Hiding data by combining AES cryptography with coverless image steganography using DCGAN: A review. In 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), IEEE. https://doi.org/10.1109/ICECA52323.2021.9675966

  9. Papaioannou, T. G., Stankovski, V., Kochovski, P., Simonet-Boulogne, A., Barelle, C., Ciaramella, A., Ciaramella, M., & Stamoulis, G. D. (2021). A new blockchain ecosystem for trusted, traceable and transparent ontological knowledge management. In International Conference on the Economics of Grids, Clouds, Systems, and Services, Springer, Cham. https://doi.org/10.1007/978-3-030-92916-9_8

  10. Kumar, R., & Sharma, R. (2021). Leveraging blockchain for ensuring trust in IoT: A survey. Journal of King Saud University-Computer and Information Sciences, 34(10), 8599–8622. https://doi.org/10.1016/j.jksuci.2021.09.004

    Article  Google Scholar 

  11. Haddad, A., Habaebi, M. H., Islam, M. R., Hasbullah, N. F., & Zabidi, S. A. (2022). Systematic review on AI-Blockchain based E-Healthcare records management systems. IEEE Access, 10, 94583–94615. https://doi.org/10.1109/ACCESS.2022.3201878

    Article  Google Scholar 

  12. Mangla, S. K., Kazancoglu, Y., Ekinci, E., Liu, M., Özbiltekin, M., & Sezer, M. D. (2021). Using system dynamics to analyze the societal impacts of blockchain technology in milk supply chainsrefer. Transportation Research Part E: Logistics and Transportation Review, 149, 102289. https://doi.org/10.1016/j.tre.2021.102289

    Article  Google Scholar 

  13. Saygili, M., Mert, I. E., & Tokdemir, O. B. (2022). A decentralized structure to reduce and resolve construction disputes in a hybrid blockchain network. Automation in construction, 134, 104056. https://doi.org/10.1016/j.autcon.2021.104056

    Article  Google Scholar 

  14. Tanveer, M., Rajani, T., Rastogi, R., Shao, Y. H., & Ganaie, M. A. (2022). Comprehensive review on twin support vector machines. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04575-w

    Article  Google Scholar 

  15. Antoniadis, A., Lambert-Lacroix, S., & Poggi, J. M. (2021). Random forests for global sensitivity analysis: A selective review. Reliability Engineering & System Safety, 206, 107312. https://doi.org/10.1016/j.ress.2020.107312

    Article  Google Scholar 

  16. Ab Aziz, M. F., Mostafa, S. A., Foozy, C. F. M., Mohammed, M. A., Elhoseny, M., & Abualkishik, A. Z. (2021). Integrating Elman recurrent neural network with particle swarm optimization algorithms for an improved hybrid training of multidisciplinary datasets. Expert Systems with Applications, 183, 115441. https://doi.org/10.1016/j.eswa.2021.115441

    Article  Google Scholar 

  17. Prabadevi, B., Deepa, N., Pham, Q. V., Nguyen, D. C., Praveen Kumar, R. M., Thippa, R. G., Pathirana, P. N., & Dobre, O. A. (2021). Toward blockchain for edge-of-things: A new paradigm, opportunities, and future directions. IEEE Internet of Things Magazine, 4(2), 102–108. https://doi.org/10.1109/IOTM.0001.2000191

    Article  Google Scholar 

  18. Latif, S., Idrees, Z., & e Huma, Z., & Ahmad, J. (2021). Blockchain technology for the industrial Internet of Things: A comprehensive survey on security challenges, architectures, applications, and future research directions. Transactions on Emerging Telecommunications Technologies, 32(11), e4337. https://doi.org/10.1002/ett.4337

    Article  Google Scholar 

  19. Sharma, P., Namasudra, S., Crespo, R. G., Parra-Fuente, J., & Trivedi, M. C. (2023). EHDHE: Enhancing security of healthcare documents in IoT-enabled digital healthcare ecosystems using blockchain. Information Sciences, 629, 703–718. https://doi.org/10.1016/j.ins.2023.01.148

    Article  Google Scholar 

  20. Nanda, S. K., Panda, S. K., & Dash, M. (2023). Medical supply chain integrated with blockchain and IoT to track the logistics of medical products. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-14846-8

    Article  Google Scholar 

  21. Abikoye, O. C., Oladipupo, E. T., Imoize, A. L., Awotunde, J. B., Lee, C. C., & Li, C. T. (2023). Securing critical user information over the internet of medical things platforms using a hybrid cryptography scheme. Future Internet, 15(3), 99. https://doi.org/10.3390/fi15030099

    Article  Google Scholar 

  22. Taloba, A. I., Elhadad, A., Rayan, A., Abd El-Aziz, R. M., Salem, M., Alzahrani, A. A., Alharithi, F. S., & Park, C. (2023). A blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare. Alexandria Engineering Journal, 65, 263–274. https://doi.org/10.1016/j.aej.2022.09.031

    Article  Google Scholar 

  23. Zhao, Z., Li, X., Luan, B., Jiang, W., Gao, W., & Neelakandan, S. (2023). Secure internet of things (IoT) using a novel brooks iyengar quantum byzantine agreement-centered blockchain networking (BIQBA-BCN) model in smart healthcare. Information Sciences, 629, 440–455. https://doi.org/10.1016/j.ins.2023.01.020

    Article  Google Scholar 

  24. Xu, L., Yu, X., & Gulliver, T. A. (2021). Intelligent outage probability prediction for mobile IoT networks based on an IGWO-elman neural network. IEEE Transactions on Vehicular Technology, 70(2), 1365–1375. https://doi.org/10.1109/TVT.2021.3051966

    Article  Google Scholar 

  25. Sharma, S., Patel, K. N., & Jha, A. S. (2021). Cryptography using blowfish algorithm. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), IEEE. https://doi.org/10.1109/ICAC3N53548.2021.9725661

  26. Velmurugadass, P., Dhanasekaran, S., Anand, S. S., & Vasudevan, V. (2021). Enhancing Blockchain security in cloud computing with IoT environment using ECIES and cryptography hash algorithm. Materials Today: Proceedings, 37, 2653–2659. https://doi.org/10.1016/j.matpr.2020.08.519

    Article  Google Scholar 

  27. Pourvahab, M., & Ekbatanifard, G. (2019). Digital forensics architecture for evidence collection and provenance preservation in iaas cloud environment using sdn and blockchain technology. IEEE Access, 7, 153349–153364. https://doi.org/10.1109/ACCESS.2019.2946978

    Article  Google Scholar 

  28. Li, H., & Han, D. (2019). EduRSS: A blockchain-based educational records secure storage and sharing scheme. IEEE Access, 7, 179273–179289. https://doi.org/10.1109/ACCESS.2019.2956157

    Article  Google Scholar 

  29. Zhao, X., Huang, G., Jiang, J., Gao, L., & Li, M. (2021). Research on lightweight anomaly detection of multimedia traffic in edge computing. Computers & Security, 111, 102463. https://doi.org/10.1016/j.cose.2021.102463

    Article  Google Scholar 

  30. Dhar, S., Khare, A., & Singh, R. (2022). Advanced security model for multimedia data sharing in Internet of Things. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.4621

    Article  Google Scholar 

  31. Rajavel, R., Ravichandran, S. K., Harimoorthy, K., Nagappan, P., & Gobichettipalayam, K. R. (2022). IoT-based smart healthcare video surveillance system using edge computing. Journal of Ambient Intelligence and Humanized Computing, 13, 3195–3207. https://doi.org/10.1007/s12652-021-03157-1

    Article  Google Scholar 

  32. Rajavel, R., Sundaramoorthy, B., Kanagachidambaresan, G. R., Ravichandran, S. K., & Leelasankar, K. (2022). Cloud-enabled diabetic retinopathy prediction system using optimized deep belief network classifier. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-022-04114-2

    Article  Google Scholar 

  33. Kumari, A., Pranav, P., Dutta, S., & Chakraborty, S. (2023). Empirical and Statistical Comparison of RSA and El-Gamal in Terms of Time Complexity. Intelligent Cyber Physical Systems and Internet of Things: ICoICI 2022 (pp. 111–120). Springer International Publishing. https://doi.org/10.1007/978-3-031-18497-0_9

    Chapter  Google Scholar 

  34. Ramachandra, M. N., Srinivasa Rao, M., Lai, W. C., Parameshachari, B. D., Babu, J. A., & Hemalatha, K. L. (2022). An efficient and secure big data storage in cloud environment by using triple data encryption standard. Big Data and Cognitive Computing, 6(4), 101. https://doi.org/10.3390/bdcc6040101

    Article  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Karthik.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of analysis formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, G.M., Kalyana Kumar, A.S., Karri, A.B. et al. Deep intelligent blockchain technology for securing IoT-based healthcare multimedia data. Wireless Netw 29, 2481–2493 (2023). https://doi.org/10.1007/s11276-023-03333-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03333-5

Keywords

Navigation