Skip to main content
Log in

A 4-element crescent shaped two-sided MIMO antenna for UWB, X and Ku band wireless applications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper presents design of a 4-element crescent-shaped two-sided multiple-input-multiple-output (MIMO) antenna, employing pattern and polarization diversity with improved element-to-element isolation, for UWB, X and Ku band wireless applications. The proposed crescent-shaped MIMO structure consists of two antennas on the top and remaining two antennas on the bottom sides of the substrate. The developed antenna operates in a frequency range from 2.8 to 15.2 GHz, covering the entire UWB 3.1–10.6 GHz, X-band and portion of Ku-band giving element-to-element isolation of more than 20 dB in most of the operating bands. Also, the proposed MIMO structure gives a maximum gain of 6.6 dBi with radiation efficiency from 75 to 95% in the operating band. The important MIMO parameters like envelope correlation coefficient (ECC < 0.005), channel capacity loss (CCL < 0.03 bits/s/Hz), mean effective gain (MEG < − 3 dB) and total active reflection coefficient (TARC < − 10 dB) are presented to estimate the performance of the developed UWB MIMO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

All the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sipal, D., Abegaonkar, M. P., & Koul, S. K. (2017). Easily extendable compact planar UWB MIMO antenna array. IEEE Antennas and Wireless Propagation Letters, 16, 2328–2331.

    Article  Google Scholar 

  2. Paulraj, A. J., Gore, D. A., Nabar, R. U., & Bolcskei, H. (2004). An overview of MIMO communications-a key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218.

    Article  Google Scholar 

  3. Patra, P. K., & Das, M. K. (2020). Modified ground with 50 Ω step fed WLAN notch 2×2 MIMO UWB antenna. International Journal of RF and Microwave Computer-Aided Engineering, 30(3), e22025.

    Article  Google Scholar 

  4. Liu, X.-L., et al. (2014). A compact ultrawideband MIMO antenna using QSCA for high isolation. IEEE Antennas and Wireless Propagation Letters, 13, 1497–1500.

    Article  Google Scholar 

  5. Toktas, A., & Akdagli, A. (2015). Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications. IET Microwaves, Antennas & Propagation, 9(8), 822–829.

    Article  Google Scholar 

  6. Gao, P., He, S., Wei, X., Xu, Z., Wang, N., & Zheng, Y. (2014). Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics. IEEE Antennas and Wireless Propagation Letters, 13, 376–379.

    Article  Google Scholar 

  7. Ibrahim, A. A., Abdalla, M. A., Abdel-Rahman, A. B., & Hamed, H. F. (2014). Compact MIMO antenna with optimized mutual coupling reduction using DGS. International Journal of Microwave and Wireless Technologies, 6(2), 173–180.

    Article  Google Scholar 

  8. Liu, L., Cheung, S. W., & Yuk, T. I. (2013). Compact MIMO antenna for portable devices in UWB applications. IEEE Transactions on Antennas and Propagation, 61(8), 4257–4264.

    Article  Google Scholar 

  9. Satpathy, S., Ghose, P., Pradhan, N. C., & Mohanty, M. (2019). Simulation and Design of UWB MIMO Antenna for High Isolation. In 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW) (pp. 476–479). IEEE.

  10. Gurjar, R., Upadhyay, D. K., Kanaujia, B. K., & Sharma, K. (2019). A novel compact self-similar fractal UWB MIMO antenna. International Journal of RF and Microwave Computer-Aided Engineering, 29(3), e21632.

    Article  Google Scholar 

  11. Alja'afreh, S. S., Huang, Y., Xu, Q., Xing, L., & Saraereh, O. A. (2016). MIMO antenna system of a compact 4-element PILA for 4G handset applications. In 2016 Loughborough Antennas & Propagation Conference (LAPC) (pp. 1–4). IEEE.

  12. Babu, K. J., Aldhaheri, R. W., Talha, M. Y., & Alruhaili, I. S. (2014). Design of a compact two element MIMO antenna system with improved isolation. Progress in Electromagnetics Research Letters, 48, 27–32.

    Article  Google Scholar 

  13. Yon, H., Aris, M. A., Abd Rahman, N. H., Nasir, N. M., & Jumaat, H. (2019). A design of decoupling structure MIMO antenna for mutual coupling reduction in 5G application. In 2019 international symposium on antennas and propagation (ISAP) (pp. 1–3). IEEE.

  14. Wang, F., Duan, Z., Tang, T., Huang, M., Wang, Z., & Gong, Y. (2015). A new metamaterial-based UWB MIMO antenna. In 2015 IEEE International Wireless Symposium (IWS 2015) (pp. 1–4). IEEE.

  15. Kormilainen, R., Luomaniemi, R., Lehtovuori, A., & Viikari, V. (2019). A lumped-element decoupling and matching network for a four-element mobile handset MIMO antenna. International Journal of Antennas and Propagation, 2019, 1–7.

    Article  Google Scholar 

  16. Ullah, S., & Zahid, M. Z. (2020). Slot-type MIMO antenna with pattern and circular polarization diversity for mobile applications. Progress in Electromagnetics Research M, 95, 93–103.

    Article  Google Scholar 

  17. JagadeeshBabu, K., Sri Ramakrishna, K., & Pratap Reddy, L. (2011). A triband swastika shaped patch antenna with reduced mutual coupling for wireless MIMO systems. Journal of Electronics (China), 28, 483–487.

    Article  Google Scholar 

  18. Toktas, A. (2017). G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals. IET Microwaves, Antennas & Propagation, 11(5), 718–725.

    Article  Google Scholar 

  19. Tang, X., Yao, Z., Li, Y., Zong, W., Liu, G., & Shan, F. (2021). A high performance UWB MIMO antenna with defected ground structure and U-shape branches. International Journal of RF and Microwave Computer-Aided Engineering, 31(2), e22270.

    Article  Google Scholar 

  20. Li, W. T., Hei, Y. Q., Subbaraman, H., Shi, X. W., & Chen, R. T. (2016). Novel printed filtenna with dual notches and good out-of-band characteristics for UWB-MIMO applications. IEEE Microwave and Wireless Components Letters, 26(10), 765–767.

    Article  Google Scholar 

  21. Shehata, M., Said, M. S., & Mostafa, H. (2018). Dual notched band quad-element MIMO antenna with multitone interference suppression for IR-UWB wireless applications. IEEE Transactions on Antennas and Propagation, 66(11), 5737–5746.

    Article  Google Scholar 

  22. Hussain, R., Sharawi, M. S., & Shamim, A. (2017). An integrated four-element slot-based MIMO and a UWB sensing antenna system for CR platforms. IEEE Transactions on Antennas and Propagation, 66(2), 978–983.

    Article  Google Scholar 

  23. Srivastava, K., Kumar, A., Kanaujia, B. K., Dwari, S., & Kumar, S. (2019). A CPW-fed UWB MIMO antenna with integrated GSM band and dual band notches. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21433.

    Article  Google Scholar 

  24. Rekha, V. S. D., Pardhasaradhi, P., Madhav, B. T. P., & Devi, Y. U. (2020). Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications. IEEE Access, 8, 145871–145880.

    Article  Google Scholar 

  25. Naktong, W., & Ruengwaree, A. (2020). Four-port rectangular monopole antenna for UWB-MIMO applications. Progress In Electromagnetics Research B, 87, 19–38.

    Article  Google Scholar 

  26. Kumar, S., Lee, G. H., Kim, D. H., Mohyuddin, W., Choi, H. C., & Kim, K. W. (2020). Multiple-input-multiple-output/diversity antenna with dual band-notched characteristics for ultra-wideband applications. Microwave and Optical Technology Letters, 62(1), 336–345.

    Article  Google Scholar 

  27. Wu, W., Yuan, B., & Wu, A. (2018). A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures. International Journal of Antennas and Propagation, 2018, 1–10.

    Google Scholar 

  28. Zhang, J., Du, C., & Wang, R. (2022). Design of a Four-Port Flexible UWB-MIMO Antenna with High Isolation for Wearable and IoT Applications. Micromachines, 13, 2141.

    Article  Google Scholar 

  29. Mohammadi Shirkolaei, M., Dalili Oskouei, H. R., & Abbasi, M. (2021). Design of 1* 4 microstrip antenna array on the human thigh with gain enhancement. IETE Journal of Research, 1–7.

  30. Ibrahim, A. A., Ahmed, M. I., & Ahmed, M. F. (2022). A systematic investigation of four ports MIMO antenna depending on flexible material for UWB networks. Scientific Reports, 12(1), 14351.

    Article  Google Scholar 

  31. Addepalli, T., Desai, A., Elfergani, I., Anveshkumar, N., Kulkarni, J., Zebiri, C., Rodriguez, J., & Abd-Alhameed, R. (2021). 8-Port semi-circular arc MIMO antenna with an inverted L-strip loaded connected ground for UWB applications. Electronics, 10(12), 1476.

    Article  Google Scholar 

  32. Addepalli, T., & Anitha, V. R. (2022). Parametric analysis of compact UWB-MIMO antenna with improved isolation using parasitic reflectors and protruded ground strips. Wireless Personal Communications, 1–17.

  33. Sharma, M., Addepalli, T., Manda, R., Vidyavathi, T., & Kapula, P. R. (2023). A detailed insight of 2 × 2 high isolation wideband dual notched band MIMO antenna with evolution initiated by theory of characteristics mode. International Journal of Microwave and Wireless Technologies, 1–20.

  34. Addepalli, T., Manda, R., Vidyavathi, T., Babu, K. J., & Kumar, B. K. (2023). Design of novel compact eight‐element lotus shaped UWB‐MIMO antenna with triple‐notch characteristics on hollow substrate. International Journal of Communication Systems, e5465.

  35. Sharawi, M. S., Hassan, A. T., & Khan, M. U. (2017). Correlation coefficient calculations for MIMO antenna systems: A comparative study. International Journal of Microwave and Wireless Technologies, 9(10), 1991–2004.

    Article  Google Scholar 

  36. Addepalli, T., Vidyavathi, T., Neelima, K., Sharma, M., & Kumar, D. (2022). Asymmetrical fed Calendula flower-shaped four-port 5G-NR band (n77, n78, and n79) MIMO antenna with high diversity performance. International Journal of Microwave and Wireless Technologies, 1–15.

  37. Fritz-Andrade, E., Jardon-Aguilar, H., & Tirado-Mendez, J. A. (2020). The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports. International Journal of RF and Microwave Computer-Aided Engineering, 30(4), e22113.

    Article  Google Scholar 

  38. Addepalli, T., BabuKamili, J., Kumar Bandi, K., Nella, A., & Sharma, M. (2022). Lotus flower-shaped 4/8-element MIMO antenna for 5G n77 and n78 band applications. Journal of Electromagnetic Waves and Applications, 36(10), 1404–1422.

    Article  Google Scholar 

  39. Manteghi, M., & Rahmat-Samii, Y. (2005). Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations. IEEE Transactions on Antennas and Propagation, 53(1), 466–474.

    Article  Google Scholar 

  40. Addepalli, T., Kamili, J. B., Vishnu Vardhan, D., Bandi, K. K., Manda, R., Perli, B. R., & Satyanarayana, V. (2023). Design and experimental analysis of dual-port antenna with high isolation for 5G sub 6 GHz: n77/n78/n79 and WiFi-5 bands applications. IETE Journal of Research, 1–10.

Download references

Acknowledgements

The authors would like to forward sincere gratefulness to Mr. Vijaya sarathi reddy, Head of Organization, Excel Radio Frequency Technologies PVT. LTD, Prasanthi Nagar, Kukatpally I E, Hyderabad, Telangana state, India for providing lab facilities for fabrication, testing and measuring the patterns of the fabricated prototype as a part of research work.

Funding

No funders are available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anveshkumar Nella.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addepalli, T., Kamili, J.B., Boddu, S. et al. A 4-element crescent shaped two-sided MIMO antenna for UWB, X and Ku band wireless applications. Wireless Netw 29, 3333–3348 (2023). https://doi.org/10.1007/s11276-023-03390-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03390-w

Keywords

Navigation