Skip to main content
Log in

LAPEP—Lightweight Authentication Protocol with Enhanced Privacy for effective secured communication in vehicular ad-hoc network

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular ad-hoc network (VANET) plays a vital role in emerging Intelligent Transportation System (ITS). VANET’s deal with the group of network that are designed in ad-hoc model in which various moving devices and other stationary linking objects that are connected over a wireless manner which interchange effective data to each other. Since, the communication between the VANET and other communication devices take place in open channel, there exist many threats caused by the intruder. Moreover, most of the existing authentication schemes suffer from computational and communicational overhead. In order to provide efficient lightweight authentication with enhanced privacy. In this paper, a novel lightweight authentication protocol named as Lightweight Authentication Protocol with Enhanced Privacy (LAPEP) has been proposed to provide efficient end to end security in VANET. The proposed protocol employs Elliptic Curve Cryptography (ECC) along with Bilinear pairing for efficient generation of keys and provides secured multiparty key exchange. Moreover, the security analysis of the proposed scheme is carried out by Burrows Abadi Needham (BAN) logic. The advantages of the proposed system are reduction of computation overhead and provide resistance to various security attacks during data transmission. Moreover, the proposed system enhances the Quality of Service (QoS) namely latency, overhead, delivery ratio, loss ratio and delay rate. The implementation of the proposed protocol is carried out in NS3 simulator. The simulation result proves that the proposed protocol improves the computational cost by 42.85%, communication cost by 35.82%, message end to end delay by 30.65%, signing time by 25.45% and verification time by 32.45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cui, J., Wei, L., Zhang, J., Xu, Y., & Zhong, H. (2019). An efficient message-authentication scheme based on edge computing for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1621–1632. https://doi.org/10.1109/TITS.2018.2827460

    Article  Google Scholar 

  2. Liu, H., Wang, H., & Gu, H. (2020). HPBS: A hybrid proxy based authentication scheme in VANETs. IEEE Access, 8, 161655–161667. https://doi.org/10.1109/ACCESS.2020.3021408

    Article  Google Scholar 

  3. Ali, I., Chen, Y., Ullah, N., Afzal, M., & He, W. (2021). Bilinear pairing-based hybrid signcryption for secure heterogeneous vehicular communications. IEEE Transactions on Vehicular Technology, 70(6), 5974–5989. https://doi.org/10.1109/TVT.2021.3078806

    Article  Google Scholar 

  4. Alshudukhi, J. S., Al-Mekhlafi, Z. G., & Mohammed, B. A. (2021). A lightweight authentication with privacy-preserving scheme for vehicular ad hoc networks based on elliptic curve cryptography. IEEE Access, 9, 15633–15642. https://doi.org/10.1109/ACCESS.2021.3053043

    Article  Google Scholar 

  5. Alshudukhi, J. S., Mohammed, B. A., & Al-Mekhlafi, Z. G. (2020). Conditional privacy-preserving authentication scheme without using point multiplication operations based on elliptic curve cryptography (ECC). IEEE Access, 8, 222032–222040. https://doi.org/10.1109/ACCESS.2020.3044961

    Article  Google Scholar 

  6. Al-Shareeda, M. A., Anbar, M., Alazzawi, M. A., Manickam, S., & Al-Hiti, A. S. (2020). LSWBVM: A lightweight security without using batch verification method scheme for a vehicle ad hoc network. IEEE Access, 8, 170507–170518. https://doi.org/10.1109/ACCESS.2020.3024587

    Article  Google Scholar 

  7. Santhosh Kumar, S. V. N., Selvi, M., & Kannan, A. (2023). A comprehensive survey on machine learning-based intrusion detection systems for secure communication in Internet of Things. Computational Intelligence and Neuroscience, 2023, 1–24. https://doi.org/10.1155/2023/8981988

    Article  Google Scholar 

  8. Nandy, T., et al. (2021). A secure, privacy-preserving, and lightweight authentication scheme for VANETs. IEEE Sensors Journal, 21(18), 20998–21011. https://doi.org/10.1109/JSEN.2021.3097172

    Article  Google Scholar 

  9. Zhang, C., Xue, X., Feng, L., Zeng, X., & Ma, J. (2019). Group-signature and group session key combined safety message authentication protocol for VANETs. IEEE Access, 7, 178310–178320. https://doi.org/10.1109/ACCESS.2019.2958356

    Article  Google Scholar 

  10. Rajasoundaran, S., Kumar, S. V. N. S., Selvi, M., Ganapathy, S., Rakesh, R., & Kannan, A. (2021). Machine learning based volatile block chain construction for secure routing in decentralized military sensor networks. Wireless Networks, 27(7), 4513–4534. https://doi.org/10.1007/s11276-021-02748-2

    Article  Google Scholar 

  11. Alshudukhi, J. S., Mohammed, B. A., & Al-Mekhlafi, Z. G. (2020). An efficient conditional privacy-preserving authentication scheme for the prevention of side-channel attacks in vehicular ad hoc networks. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3045940

    Article  Google Scholar 

  12. Rajput, U., Abbas, F., Eun, H., & Oh, H. (2017). A hybrid approach for efficient privacy-preserving authentication in VANET. IEEE Access, 5, 12014–12030. https://doi.org/10.1109/ACCESS.2017.2717999

    Article  Google Scholar 

  13. Yue, X., Chen, B., Wang, X., Duan, Y., Gao, M., & He, Y. (2018). An efficient and secure anonymous authentication scheme for VANETs based on the framework of group signatures. IEEE Access, 6, 62584–62600. https://doi.org/10.1109/ACCESS.2018.2876126

    Article  Google Scholar 

  14. Santhosh Kumar, S. V. N., & Palanichamy, Y. (2018). Energy efficient and secured distributed data dissemination using hop by hop authentication in WSN. Wireless Networks, 24(4), 1343–1360. https://doi.org/10.1007/s11276-017-1549-3

    Article  Google Scholar 

  15. Tangade, S., Manvi, S. S., & Lorenz, P. (2018). Decentralized and scalable privacy-preserving authentication scheme in VANETs. IEEE Transactions on Vehicular Technology, 67(9), 8647–8655. https://doi.org/10.1109/TVT.2018.2839979

    Article  Google Scholar 

  16. Lin, X., Member, S., & Li, X. (2013). Achieving efficient cooperative message authentication in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 62(7), 3339–3348.

    Article  Google Scholar 

  17. Santhosh Kumar, S. V. N., Selvi, M., Gayathri, A., Ruby, D., & Kannan, A. (2019). Energy efficient rule based intelligent routing using fitness functions in wireless sensor networks. The International Journal of Innovative Technology and Exploring Engineering, 8(12), 5414–5420. https://doi.org/10.35940/ijitee.L3790081219

    Article  Google Scholar 

  18. Selvi, M., Gayathri, A., Santhosh, K. S., & Kannan, A. (2020). Energy efficient and secured MQTT protocol using IoT. The International Journal of Innovative Technology and Exploring Engineering, 9(4), 11–14. https://doi.org/10.35940/ijitee.b6264.029420

    Article  Google Scholar 

  19. Hao, Y., Cheng, Y., Zhou, C., & Song, W. (2011). A distributed key management framework with cooperative message authentication in VANETs. IEEE Journal on Selected Areas in Communications, 29(3), 616–629. https://doi.org/10.1109/JSAC.2011.110311

    Article  Google Scholar 

  20. Thangaramya, K., Kulothungan, K., Logambigai, R., Selvi, M., Ganapathy, S., & Kannan, A. (2019). Energy aware cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Computer Networks, 151, 211–223. https://doi.org/10.1016/j.comnet.2019.01.024

    Article  Google Scholar 

  21. Yu, F. R., Wang, F., Tang, H., & Mason, P. C. (2010). A hierarchical identity based key management scheme in tactical mobile ad hoc networks. IEEE Transactions on Network and Service Management, 7(4), 258–267. https://doi.org/10.1109/TNSM.2010.1012.0362

    Article  Google Scholar 

  22. Manivannan, D., Showkat, S., & Zeadally, S. (2020). Secure authentication and privacy-preserving techniques in Vehicular Ad-hoc NETworks (VANETs). Vehicular Communications, 25, 100247. https://doi.org/10.1016/j.vehcom.2020.100247

    Article  Google Scholar 

  23. Khan, M. A., et al. (2021). An efficient and secure certificate-based access control and key agreement scheme for flying ad-hoc networks. IEEE Transactions on Vehicular Technology, 70(5), 4839–4851. https://doi.org/10.1109/TVT.2021.3055895

    Article  Google Scholar 

  24. Bayat, M., Pournaghi, M., Rahimi, M., & Barmshoory, M. (2020). NERA: A new and efficient RSU based authentication scheme for VANETs. Wirel. Networks, 26(5), 3083–3098. https://doi.org/10.1007/s11276-019-02039-x

    Article  Google Scholar 

  25. Limbasiya, T., Member, S., & Das, D. (2020). Lightweight secure message broadcasting protocol for vehicle-to-vehicle communication. IEEE Systems Journal, 14(1), 520–529.

    Article  Google Scholar 

  26. Al-Shareeda, M. A., Anbar, M., Manickam, S., Khalil, A., & Hasbullah, I. H. (2021). Security and privacy schemes in vehicular ad-hoc network with identity-based cryptography approach: A survey. IEEE Access, 9, 121522–121531. https://doi.org/10.1109/ACCESS.2021.3109264

    Article  Google Scholar 

  27. Limbasiya, T., & Das, D. (2021). VCom: Secure and efficient vehicle-to-vehicle message communication protocol. IEEE Transactions on Network and Service Management, 18(2), 2365–2376. https://doi.org/10.1109/TNSM.2020.3042526

    Article  Google Scholar 

  28. Vasudev, H., Deshpande, V., Das, D., & Das, S. K. (2020). A lightweight mutual authentication protocol for V2V communication in internet of vehicles. IEEE Transactions on Vehicular Technology, 69(6), 6709–6717. https://doi.org/10.1109/TVT.2020.2986585

    Article  Google Scholar 

  29. Wu, L., et al. (2019). An efficient privacy-preserving mutual authentication scheme for secure V2V communication in vehicular ad hoc network. IEEE Access, 7, 55050–55063. https://doi.org/10.1109/ACCESS.2019.2911924

    Article  Google Scholar 

  30. Amin, R., Pali, I., & Sureshkumar, V. (2021). Software-defined network enabled vehicle to vehicle secured data transmission protocol in VANETs. Journal of Information Security and Applications, 58(February), 102729. https://doi.org/10.1016/j.jisa.2020.102729

    Article  Google Scholar 

  31. Fatemidokht, H., Rafsanjani, M. K., Gupta, B. B., & Hsu, C. H. (2021). Efficient and secure routing protocol based on artificial intelligence algorithms with UAV-assisted for vehicular ad hoc networks in intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4757–4769. https://doi.org/10.1109/TITS.2020.3041746

    Article  Google Scholar 

  32. Kamal, M., Srivastava, G., & Tariq, M. (2021). Blockchain-based lightweight and secured V2V communication in the internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(7), 3997–4004. https://doi.org/10.1109/TITS.2020.3002462

    Article  Google Scholar 

  33. Liu, Y., Wang, Y., & Chang, G. (2017). Efficient privacy-preserving dual authentication and key agreement scheme for secure V2V communications in an IoV paradigm. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2740–2749. https://doi.org/10.1109/TITS.2017.2657649

    Article  Google Scholar 

  34. Raja, G., Anbalagan, S., Vijayaraghavan, G., Dhanasekaran, P., Al-Otaibi, Y. D., & Bashir, A. K. (2021). Energy-efficient end-to-end security for software-defined vehicular networks. IEEE Transactions on Industrial Informatics, 17(8), 5730–5737. https://doi.org/10.1109/TII.2020.3012166

    Article  Google Scholar 

  35. Chuang, M. C., & Lee, J. F. (2011). PPAS: A privacy preservation authentication scheme for vehicle-to- infrastructure communication networks. In 2011 International Conference on Consumer Electronics, Communications and Networks, CECNet 2011—Proceedings (pp. 1509–1512). https://doi.org/10.1109/CECNET.2011.5768254

  36. Wang, P., & Liu, Y. (2021). SEMA: Secure and efficient message authentication protocol for VANETs. IEEE Systems Journal, 15(1), 846–855. https://doi.org/10.1109/JSYST.2021.3051435

    Article  Google Scholar 

  37. Sikarwar, H., & Das, D. (2022). Towards lightweight authentication and batch verification scheme in IoV. IEEE Transactions on Dependable and Secure Computing, 19(5), 3244–3256. https://doi.org/10.1109/TDSC.2021.3090400

    Article  Google Scholar 

  38. Vasudev, H., & Das, D. (2019). An efficient authentication and secure vehicle-to-vehicle communications in an IoV. In IEEE Vehicular Technology Conference, vol. 2019. https://doi.org/10.1109/VTCSpring.2019.8746612

  39. Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network: Performance evaluation. Transportation Research Part C: Emerging Technologies, 68(June 2019), 168–184. https://doi.org/10.1016/j.trc.2016.03.008

    Article  Google Scholar 

  40. Rasheed, A. A., Mahapatra, R. N., & Hamza-Lup, F. G. (2020). Adaptive group-based zero knowledge proof-authentication protocol in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(2), 867–881. https://doi.org/10.1109/TITS.2019.2899321

    Article  Google Scholar 

  41. Ali, I., Gervais, M., Ahene, E., & Li, F. (2019). A blockchain-based certificateless public key signature scheme for vehicle-to-infrastructure communication in VANETs. Journal of Systems Architecture, 99(August), 101636. https://doi.org/10.1016/j.sysarc.2019.101636

    Article  Google Scholar 

  42. Alfadhli, S. A., Lu, S., Chen, K., & Sebai, M. (2020). MFSPV: A multi-factor secured and lightweight privacy-preserving authentication scheme for VANETs. IEEE Access, 8, 142858–142874. https://doi.org/10.1109/ACCESS.2020.3014038

    Article  Google Scholar 

  43. Ali, I., & Li, F. (2020). An efficient conditional privacy-preserving authentication scheme for Vehicle-To-Infrastructure communication in VANETs. Vehicular Communications, 22, 100228. https://doi.org/10.1016/j.vehcom.2019.100228

    Article  Google Scholar 

  44. Zhang, H., & Lu, X. (2020). Vehicle communication network in intelligent transportation system based on Internet of Things. Computer Communications, 160(January), 799–806. https://doi.org/10.1016/j.comcom.2020.03.041

    Article  Google Scholar 

  45. Liu, Y., Guo, W., Zhong, Q., & Yao, G. (2017). LVAP: Lightweight V2I authentication protocol using group communication in VANETs. International Journal of Communication Systems. https://doi.org/10.1002/dac.3317

    Article  Google Scholar 

  46. Al-shareeda, M. A., & Anbar, M. (2020). VPPCS: Vanet-based privacy-preserving communication scheme. IEEE Access, 8, 150914–150928.

    Article  Google Scholar 

  47. Ali, I., Chen, Y., Pan, C., & Zhou, A. (2022). ECCHSC: Computationally and bandwidth efficient ECC-based hybrid signcryption protocol for secure heterogeneous vehicle-to-infrastructure communications. IEEE Internet of Things Journal, 9(6), 4435–4450. https://doi.org/10.1109/JIOT.2021.3104010

    Article  Google Scholar 

  48. Rawat, G. S., Singh, K., Arshad, N. I., Hadidi, K., & Ahmadian, A. (2022). A lightweight authentication scheme with privacy preservation for vehicular networks. Computers and Electrical Engineering, 100(September 2021), 108016. https://doi.org/10.1016/j.compeleceng.2022.108016

    Article  Google Scholar 

  49. Zhou, F., Li, Y., & Ding, Y. (2019). Practical V2I secure communication schemes for heterogeneous VANETs. Applied Sciences, 9(15), 1–16. https://doi.org/10.3390/app9153131

    Article  Google Scholar 

  50. Wang, Y., Zhong, H., Xu, Y., Cui, J., & Wu, G. (2020). Enhanced security identity-based privacy-preserving authentication scheme supporting revocation for VANETs. IEEE Systems Journal, 14(4), 5373–5383. https://doi.org/10.1109/JSYST.2020.2977670

    Article  Google Scholar 

  51. Zhou, Y., Liu, S., Xiao, M., Deng, S., & Wang, X. (2018). An efficient V2I authentication scheme for VANETs. Mobile Information Systems. https://doi.org/10.1155/2018/4070283

    Article  Google Scholar 

  52. Zhou, J., Cao, Z., Qin, Z., Dong, X., & Ren, K. (2020). LPPA: Lightweight privacy-preserving authentication from efficient multi-key secure outsourced computation for location-based services in VANETs. IEEE Transactions on Information Forensics and Security, 15, 420–434. https://doi.org/10.1109/TIFS.2019.2923156

    Article  Google Scholar 

  53. Feng, X., Shi, Q., Xie, Q., & Wang, L. (2021). P2BA: A privacy-preserving protocol with batch authentication against semi-trusted RSUs in vehicular ad hoc networks. IEEE Transactions on Information Forensics and Security, 16, 3888–3899. https://doi.org/10.1109/TIFS.2021.3098971

    Article  Google Scholar 

  54. Qi, J., & Gao, T. (2020). A privacy-preserving authentication and pseudonym revocation scheme for VANETs. IEEE Access, 8, 177693–177707. https://doi.org/10.1109/ACCESS.2020.3027718

    Article  Google Scholar 

  55. Gao, Y., Wu, H., Song, B., Jin, Y., Luo, X., & Zeng, X. (2019). A distributed network intrusion detection system for distributed denial of service attacks in vehicular ad hoc network. IEEE Access, 7, 154560–154571. https://doi.org/10.1109/ACCESS.2019.2948382

    Article  Google Scholar 

  56. Nayak, R. P., Sethi, S., Bhoi, S. K., Sahoo, K. S., & Nayyar, A. (2023). ML-MDS: Machine learning based misbehavior detection system for cognitive software-defined multimedia VANETs (CSDMV) in smart cities. Multimedia Tools and Applications, 82(3), 3931–3951. https://doi.org/10.1007/s11042-022-13440-8

    Article  Google Scholar 

  57. Bhatia, J., Dave, R., Bhayani, H., Tanwar, S., & Nayyar, A. (2020). SDN-based real-time urban traffic analysis in VANET environment. Computer and Communications, 149(2019), 162–175. https://doi.org/10.1016/j.comcom.2019.10.011

    Article  Google Scholar 

  58. Zhou, X., Luo, M., Vijayakumar, P., Peng, C., & He, D. (2022). Efficient certificateless conditional privacy-preserving authentication for VANETs. IEEE Transactions on Vehicular Technology, 71(7), 7863–7875. https://doi.org/10.1109/TVT.2022.3169948

    Article  Google Scholar 

  59. Othman, W., Fuyou, M., Xue, K., & Hawbani, A. (2021). Physically secure lightweight and privacy-preserving message authentication protocol for VANET in smart city. IEEE Transactions on Vehicular Technology, 70(12), 12902–12917. https://doi.org/10.1109/TVT.2021.3121449

    Article  Google Scholar 

  60. Lv, S., & Liu, Y. (2022). PLVA: Privacy-preserving and lightweight V2I authentication protocol. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6633–6639. https://doi.org/10.1109/TITS.2021.3059638

    Article  Google Scholar 

  61. Wei, L., Cui, J., Zhong, H., Xu, Y., & Liu, L. (2022). Proven secure tree-based authenticated key agreement for securing V2V and V2I communications in VANETs. IEEE Transactions on Mobile Computing, 21(9), 3280–3297. https://doi.org/10.1109/TMC.2021.3056712

    Article  Google Scholar 

  62. Ali, I., Chen, Y., Ullah, N., Kumar, R., & He, W. (2021). An efficient and provably secure ECC-based conditional privacy-preserving authentication for vehicle-to-vehicle communication in VANETs. IEEE Transactions on Vehicular Technology, 70(2), 1278–1291. https://doi.org/10.1109/TVT.2021.3050399

    Article  Google Scholar 

  63. Umar, M., Hafizul Islam, S. K., Mahmood, K., Ahmed, S., Ghaffar, Z., & Saleem, M. A. (2021). Provable secure identity-based anonymous and privacy-preserving inter-vehicular authentication protocol for VANETS using PUF. IEEE Transactions on Vehicular Technology, 70(11), 12158–12167. https://doi.org/10.1109/TVT.2021.3118892

    Article  Google Scholar 

  64. Al-shareeda, M. A., et al. (2020). SWPPA: A new and efficient conditional privacy-preserving authentication scheme for Vehicular Ad Hoc Networks (VANETs). Applied Mathematics and Information Sciences, 14(6), 957–966. https://doi.org/10.18576/amis/140602

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. N. Santhosh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayashree, S., Santhosh Kumar, S.V.N. LAPEP—Lightweight Authentication Protocol with Enhanced Privacy for effective secured communication in vehicular ad-hoc network. Wireless Netw 30, 151–178 (2024). https://doi.org/10.1007/s11276-023-03459-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03459-6

Keywords

Navigation