Skip to main content

Advertisement

Log in

Mlora-CBF: efficient cluster-based routing protocol against resource allocation using modified location routing algorithm with cluster-based flooding

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The transmission of data in wireless networks needs some suitable path to travel to the destination. Then, while traveling the data in some routes, they select the appropriate direction for receiving the goal that can be enabled in this study. Here, some problems in wireless network data transmission are channel errors, hidden poses, and terminal problems. This causes many problems in wireless networks. To resolve this problem, the routing must be the inserter among the routing methods, enabling the enterprise for the operations and integrating the many applications. The technique of the LEACH protocol and the Recurrent LEACH protocol is used for routing the data in the ad-hoc wireless networks. Here the LEACH protocol is used to communicate within the cluster for the perfect location in the modified location for the routing algorithm. The recurrent LEACH communication protocol has been used to compare the smart route structure. Data management and space allocation analysis have been enabled. This results from household hazardous waste for managing the smart routing and the smart bit technology. Also, a comparison of the bin structure has been enabled for the bin structure. Based on the wireless transmission, the storage, bandwidth energy, and the lack of resources allow the SNA to applications in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  1. Wang, J., & Li, C. (2022). A weighted energy consumption minimization-based multi-hop uneven clustering routing protocol for cognitive radio sensor networks. Scientific Reports, 12, 14039. https://doi.org/10.1038/s41598-022-18310-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Xue, X., & Calabretta, N. (2022). Nanosecond optical switching and control system for data center networks. Nature Communications, 13, 2257. https://doi.org/10.1038/s41467-022-29913-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Takeda, M., Hirabayashi, T., Adachi, Y., & Miyashita, Y. (2018). Dynamic laminar rerouting of an inter-areal mnemonic signal by cognitive operations in primate temporal cortex. Nature Communications, 9, 4629. https://doi.org/10.1038/s41467-018-07007-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Mohammed Nasr, M. M., Abdelgader, A. M. S., Wang, Z. G., & Shen, L. F. (2016). VANET clustering-based routing protocol suitable for deserts. Sensors, 16(4), 478.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  5. Yu, B., Xu, C.-Z., & Guo, M. (2012). Adaptive forwarding delay control for VANET data aggregation. IEEE Transactions on Parallel and Distributed Systems, 23, 11–18.

    Article  Google Scholar 

  6. Chin, K.-W., Judge, J., Williams, A., & Kermode, R. (2002). Implementation experience with MANET routing protocols. ACM SIGCOMM Computer Communication Review, 32, 49–59. https://doi.org/10.1145/774749.774758

    Article  Google Scholar 

  7. Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An energy-efficient routing protocol using movement trends in vehicular ad hoc networks. The Computer Journal, 56, 938–946. https://doi.org/10.1093/comjnl/bxt028

    Article  Google Scholar 

  8. Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. IEEE Transactions on Vehicular Technology, 60, 4560–4574. https://doi.org/10.1109/TVT.2011.2173510

    Article  Google Scholar 

  9. Benslimane, A., Taleb, T., & Sivara, R. (2011). Dynamic clustering-based adaptive mobile gateway management in integrated VANET-3G Heterogeneous Wireless Networks. IEEE Journal on Selected Areas in Communications, 29, 559–570. https://doi.org/10.1109/JSAC.2011.110306

    Article  Google Scholar 

  10. Li, Y., Zhao, M., & Wang, W. (2011). Intermittently connected vehicle-to-vehicle networks: Detection and analysis. In Proceedings of the IEEE Global Telecommunication Conference (GLOBECOM 2011), Houston, TX, USA, 5–9 Dec (pp. 5–9).

  11. Sondi, P., Abbassi, I., Ramat, E., Chebbi, E., & Graiet, M. (2021). Modeling and verifying clustering properties in a vehicular ad hoc network protocol with Event-B. Scientific Reports, 11, 17620. https://doi.org/10.1038/s41598-021-97063-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Khan, T., Singh, K., Ahmad, K., & Ahmad, K. A. (2023). A secure and dependable trust assessment (SDTS) scheme for industrial communication networks. Scientific Reports, 13, 1910. https://doi.org/10.1038/s41598-023-28721-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Uppu, R., Midolo, L., Zhou, X., Carolan, J., & Lodahl, P. (2021). Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nature Nanotechnology, 16, 1308–1317. https://doi.org/10.1038/s41565-021-00965-6

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Krabbe, S., Paradiso, E., d’Aquin, S., Bitterman, Y., Courtin, J., Xu, C., Yonehara, K., Markovic, M., Müller, C., Eichlisberger, T., & Gründemann, J. (2019). Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nature Neuroscience, 22, 1834–1843. https://doi.org/10.1038/s41593-019-0508-y

    Article  CAS  PubMed  Google Scholar 

  15. Ellender, T. J., Avery, S. V., Mahfooz, K., Scaber, J., von Klemperer, A., Nixon, S. L., Buchan, M. J., van Rheede, J. J., Gatti, A., Waites, C., & Pavlou, H. J. (2019). Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks. Nature Communications, 10, 5224. https://doi.org/10.1038/s41467-019-13206-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Senoussi, M., Verbeke, P., Desender, K., De Loof, E., Talsma, D., & Verguts, T. (2022). Theta oscillations shift towards optimal frequency for cognitive control. Nature Human Behaviour, 6, 1000. https://doi.org/10.1038/s41562-022-01335-5

    Article  PubMed  Google Scholar 

  17. Monika, Singh, S., & Wason, A. (2023). Performance investigations on data protection algorithms in generalized multi-protocol label switched optical networks. Scientific Reports, 13, 425. https://doi.org/10.1038/s41598-022-26942-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Kleineberg, K. K., & Helbing, D. (2017). Collective navigation of complex networks: Participatory greedy routing. Scientific Reports, 7, 2897. https://doi.org/10.1038/s41598-017-02910-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Recasens, M., Gross, J., & Uhlhaas, P. J. (2018). Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: A MEG-study. Scientific Reports, 8, 14007. https://doi.org/10.1038/s41598-018-32385-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Kretzmann, J. A., Liedl, A., Monferrer, A., Mykhailiuk, V., Beerkens, S., & Dietz, H. (2023). Gene-encoding DNA origami for mammalian cell expression. Nature Communications, 14, 1017. https://doi.org/10.1038/s41467-023-36601-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Patil, A., Pant, M., Englund, D., Towsley, D., Guha, S., et al. (2022). Entanglement generation in a quantum network at a distance-independent rate. npj Quantum Information, 8, 51. https://doi.org/10.1038/s41534-022-00536-0

    Article  ADS  Google Scholar 

  22. Pruss, K. M., Chen, H., Liu, Y., Van Treuren, W., Higginbottom, S. K., Jarman, J. B., Fischer, C. R., Mak, J., Wong, B., Cowan, T. M., & Fischbach, M. A. (2023). Host-microbe co-metabolism via MCAD generates circulating metabolites, including hippuric acid. Nature Communications, 14, 512. https://doi.org/10.1038/s41467-023-36138-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Hahn, F., Pappa, A., & Eisert, J. (2019). Quantum network routing and local complementation. npj Quantum Information, 5, 76. https://doi.org/10.1038/s41534-019-0191-6

    Article  ADS  Google Scholar 

  24. Chou, J. S., & Molla, A. (2022). Recent advances in the use of bio-inspired jellyfish search algorithm for solving optimization problems. Scientific Reports, 12, 19157. https://doi.org/10.1038/s41598-022-23121-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J., & Khalil, A. S. (2018). Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nature Biotechnology, 36, 614–623. https://doi.org/10.1038/nbt.4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kitsak, M., Ganin, A., Elmokashfi, A., Cui, H., Eisenberg, D. A., Alderson, D. L., Korkin, D., & Linkov, I. (2023). Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping. Nature Communications, 14, 186. https://doi.org/10.1038/s41467-022-35181-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Preeti, Kaur, R., & Singh, D. (2022). Dimension learning based chimp optimizer for energy-efficient wireless sensor networks. Scientific Reports, 12, 14968. https://doi.org/10.1038/s41598-022-18001-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Vasconcelos, R., Reisenbauer, S., Salter, C., Wachter, G., Wirtitsch, D., Schmiedmayer, J., Walther, P., & Trupke, M. (2020). Scalable spin–photon entanglement by time-to-polarization conversion. npj Quantum Information, 6, 9. https://doi.org/10.1038/s41534-019-0236-x

    Article  ADS  Google Scholar 

  29. Mohanty, A., Li, Q., Tadayon, M. A., Roberts, S. P., Bhatt, G. R., Shim, E., Ji, X., Cardenas, J., Miller, S. A., Kepecs, A., & Lipson, M. (2020). Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nature Biomedical Engineering, 4, 223–231. https://doi.org/10.1038/s41551-020-0516-y

    Article  CAS  PubMed  Google Scholar 

  30. Kirst, C., Timme, M., & Battaglia, D. (2016). Dynamic information routing in complex networks. Nature Communications, 7, 11061. https://doi.org/10.1038/ncomms11061

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Yang, G., Murray, J., & Wang, X. J. (2016). A dendritic disinhibitory circuit mechanism for pathway-specific gating. Nature Communications, 7, 12815. https://doi.org/10.1038/ncomms12815

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Song, Y., Guo, C., Xu, P., Li, L., & Zhang, R. (2021). Research on routing and scheduling algorithms for the simultaneous transmission of diverse data streaming services on the industrial internet. Scientific Reports, 11, 18351. https://doi.org/10.1038/s41598-021-97613-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

Authors did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and methodology of this study, the assessment of the outcomes, and the writing of the manuscript.

Corresponding author

Correspondence to Amjad Aldweesh.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldweesh, A., Kodati, S., Alauthman, M. et al. Mlora-CBF: efficient cluster-based routing protocol against resource allocation using modified location routing algorithm with cluster-based flooding. Wireless Netw 30, 671–693 (2024). https://doi.org/10.1007/s11276-023-03506-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03506-2

Keywords

Navigation