Abstract
The transmission of data in wireless networks needs some suitable path to travel to the destination. Then, while traveling the data in some routes, they select the appropriate direction for receiving the goal that can be enabled in this study. Here, some problems in wireless network data transmission are channel errors, hidden poses, and terminal problems. This causes many problems in wireless networks. To resolve this problem, the routing must be the inserter among the routing methods, enabling the enterprise for the operations and integrating the many applications. The technique of the LEACH protocol and the Recurrent LEACH protocol is used for routing the data in the ad-hoc wireless networks. Here the LEACH protocol is used to communicate within the cluster for the perfect location in the modified location for the routing algorithm. The recurrent LEACH communication protocol has been used to compare the smart route structure. Data management and space allocation analysis have been enabled. This results from household hazardous waste for managing the smart routing and the smart bit technology. Also, a comparison of the bin structure has been enabled for the bin structure. Based on the wireless transmission, the storage, bandwidth energy, and the lack of resources allow the SNA to applications in this study.
Similar content being viewed by others
Data availability
No datasets were generated or analyzed during the current study.
Code availability
Not applicable.
References
Wang, J., & Li, C. (2022). A weighted energy consumption minimization-based multi-hop uneven clustering routing protocol for cognitive radio sensor networks. Scientific Reports, 12, 14039. https://doi.org/10.1038/s41598-022-18310-9
Xue, X., & Calabretta, N. (2022). Nanosecond optical switching and control system for data center networks. Nature Communications, 13, 2257. https://doi.org/10.1038/s41467-022-29913-1
Takeda, M., Hirabayashi, T., Adachi, Y., & Miyashita, Y. (2018). Dynamic laminar rerouting of an inter-areal mnemonic signal by cognitive operations in primate temporal cortex. Nature Communications, 9, 4629. https://doi.org/10.1038/s41467-018-07007-1
Mohammed Nasr, M. M., Abdelgader, A. M. S., Wang, Z. G., & Shen, L. F. (2016). VANET clustering-based routing protocol suitable for deserts. Sensors, 16(4), 478.
Yu, B., Xu, C.-Z., & Guo, M. (2012). Adaptive forwarding delay control for VANET data aggregation. IEEE Transactions on Parallel and Distributed Systems, 23, 11–18.
Chin, K.-W., Judge, J., Williams, A., & Kermode, R. (2002). Implementation experience with MANET routing protocols. ACM SIGCOMM Computer Communication Review, 32, 49–59. https://doi.org/10.1145/774749.774758
Zhang, D., Yang, Z., Raychoudhury, V., Chen, Z., & Lloret, J. (2013). An energy-efficient routing protocol using movement trends in vehicular ad hoc networks. The Computer Journal, 56, 938–946. https://doi.org/10.1093/comjnl/bxt028
Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. IEEE Transactions on Vehicular Technology, 60, 4560–4574. https://doi.org/10.1109/TVT.2011.2173510
Benslimane, A., Taleb, T., & Sivara, R. (2011). Dynamic clustering-based adaptive mobile gateway management in integrated VANET-3G Heterogeneous Wireless Networks. IEEE Journal on Selected Areas in Communications, 29, 559–570. https://doi.org/10.1109/JSAC.2011.110306
Li, Y., Zhao, M., & Wang, W. (2011). Intermittently connected vehicle-to-vehicle networks: Detection and analysis. In Proceedings of the IEEE Global Telecommunication Conference (GLOBECOM 2011), Houston, TX, USA, 5–9 Dec (pp. 5–9).
Sondi, P., Abbassi, I., Ramat, E., Chebbi, E., & Graiet, M. (2021). Modeling and verifying clustering properties in a vehicular ad hoc network protocol with Event-B. Scientific Reports, 11, 17620. https://doi.org/10.1038/s41598-021-97063-3
Khan, T., Singh, K., Ahmad, K., & Ahmad, K. A. (2023). A secure and dependable trust assessment (SDTS) scheme for industrial communication networks. Scientific Reports, 13, 1910. https://doi.org/10.1038/s41598-023-28721-x
Uppu, R., Midolo, L., Zhou, X., Carolan, J., & Lodahl, P. (2021). Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nature Nanotechnology, 16, 1308–1317. https://doi.org/10.1038/s41565-021-00965-6
Krabbe, S., Paradiso, E., d’Aquin, S., Bitterman, Y., Courtin, J., Xu, C., Yonehara, K., Markovic, M., Müller, C., Eichlisberger, T., & Gründemann, J. (2019). Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nature Neuroscience, 22, 1834–1843. https://doi.org/10.1038/s41593-019-0508-y
Ellender, T. J., Avery, S. V., Mahfooz, K., Scaber, J., von Klemperer, A., Nixon, S. L., Buchan, M. J., van Rheede, J. J., Gatti, A., Waites, C., & Pavlou, H. J. (2019). Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks. Nature Communications, 10, 5224. https://doi.org/10.1038/s41467-019-13206-1
Senoussi, M., Verbeke, P., Desender, K., De Loof, E., Talsma, D., & Verguts, T. (2022). Theta oscillations shift towards optimal frequency for cognitive control. Nature Human Behaviour, 6, 1000. https://doi.org/10.1038/s41562-022-01335-5
Monika, Singh, S., & Wason, A. (2023). Performance investigations on data protection algorithms in generalized multi-protocol label switched optical networks. Scientific Reports, 13, 425. https://doi.org/10.1038/s41598-022-26942-0
Kleineberg, K. K., & Helbing, D. (2017). Collective navigation of complex networks: Participatory greedy routing. Scientific Reports, 7, 2897. https://doi.org/10.1038/s41598-017-02910-x
Recasens, M., Gross, J., & Uhlhaas, P. J. (2018). Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: A MEG-study. Scientific Reports, 8, 14007. https://doi.org/10.1038/s41598-018-32385-3
Kretzmann, J. A., Liedl, A., Monferrer, A., Mykhailiuk, V., Beerkens, S., & Dietz, H. (2023). Gene-encoding DNA origami for mammalian cell expression. Nature Communications, 14, 1017. https://doi.org/10.1038/s41467-023-36601-1
Patil, A., Pant, M., Englund, D., Towsley, D., Guha, S., et al. (2022). Entanglement generation in a quantum network at a distance-independent rate. npj Quantum Information, 8, 51. https://doi.org/10.1038/s41534-022-00536-0
Pruss, K. M., Chen, H., Liu, Y., Van Treuren, W., Higginbottom, S. K., Jarman, J. B., Fischer, C. R., Mak, J., Wong, B., Cowan, T. M., & Fischbach, M. A. (2023). Host-microbe co-metabolism via MCAD generates circulating metabolites, including hippuric acid. Nature Communications, 14, 512. https://doi.org/10.1038/s41467-023-36138-3
Hahn, F., Pappa, A., & Eisert, J. (2019). Quantum network routing and local complementation. npj Quantum Information, 5, 76. https://doi.org/10.1038/s41534-019-0191-6
Chou, J. S., & Molla, A. (2022). Recent advances in the use of bio-inspired jellyfish search algorithm for solving optimization problems. Scientific Reports, 12, 19157. https://doi.org/10.1038/s41598-022-23121-z
Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J., & Khalil, A. S. (2018). Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nature Biotechnology, 36, 614–623. https://doi.org/10.1038/nbt.4151
Kitsak, M., Ganin, A., Elmokashfi, A., Cui, H., Eisenberg, D. A., Alderson, D. L., Korkin, D., & Linkov, I. (2023). Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping. Nature Communications, 14, 186. https://doi.org/10.1038/s41467-022-35181-w
Preeti, Kaur, R., & Singh, D. (2022). Dimension learning based chimp optimizer for energy-efficient wireless sensor networks. Scientific Reports, 12, 14968. https://doi.org/10.1038/s41598-022-18001-5
Vasconcelos, R., Reisenbauer, S., Salter, C., Wachter, G., Wirtitsch, D., Schmiedmayer, J., Walther, P., & Trupke, M. (2020). Scalable spin–photon entanglement by time-to-polarization conversion. npj Quantum Information, 6, 9. https://doi.org/10.1038/s41534-019-0236-x
Mohanty, A., Li, Q., Tadayon, M. A., Roberts, S. P., Bhatt, G. R., Shim, E., Ji, X., Cardenas, J., Miller, S. A., Kepecs, A., & Lipson, M. (2020). Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nature Biomedical Engineering, 4, 223–231. https://doi.org/10.1038/s41551-020-0516-y
Kirst, C., Timme, M., & Battaglia, D. (2016). Dynamic information routing in complex networks. Nature Communications, 7, 11061. https://doi.org/10.1038/ncomms11061
Yang, G., Murray, J., & Wang, X. J. (2016). A dendritic disinhibitory circuit mechanism for pathway-specific gating. Nature Communications, 7, 12815. https://doi.org/10.1038/ncomms12815
Song, Y., Guo, C., Xu, P., Li, L., & Zhang, R. (2021). Research on routing and scheduling algorithms for the simultaneous transmission of diverse data streaming services on the industrial internet. Scientific Reports, 11, 18351. https://doi.org/10.1038/s41598-021-97613-9
Funding
Authors did not receive any funding.
Author information
Authors and Affiliations
Contributions
All authors contributed to the design and methodology of this study, the assessment of the outcomes, and the writing of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declares that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Aldweesh, A., Kodati, S., Alauthman, M. et al. Mlora-CBF: efficient cluster-based routing protocol against resource allocation using modified location routing algorithm with cluster-based flooding. Wireless Netw 30, 671–693 (2024). https://doi.org/10.1007/s11276-023-03506-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-023-03506-2