Skip to main content

Advertisement

Log in

Novel multiple access protocols against Q-learning-based tunnel monitoring using flying ad hoc networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Some protocols operated in the MAC layer and the open-source interconnections model to share the packet delivery and the network channel to deliver the packet is done. Transmitting two or more messages through one channel causes problems in packing and information delivery. This causes the lagging of the data to reach the destinations. So, the method of multiple hubs and the host must be created for the packet and the information delivery. This makes the fast transmission of data and messages. Method: The Tunnel monitoring system and the FANET are used for analysis in this study for the research, enabling the mobile radio networks for the examination. The FANET-based flying network system allows the paradigm for accessing human analysis. Then the drone-related data can be helped. The tunnel monitoring system navigates the information purpose and routing of the drone flying and gathering the data. Then based on human analysis, 40% of the data can be analyzed using the system's formation. Result: These results support the coverage and the tunnel monitoring process for detecting the navigation system. Conclusion: Also, some tunnel-based detection using drones is found in this study based on the wireless muometric navigation system that can be enabled using Q-learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lansky, J., Rahmani, A. M., Malik, M. H., et al. (2023). An energy-aware routing method using the firefly algorithm for flying ad hoc networks. Science and Reports, 13, 1323. https://doi.org/10.1038/s41598-023-27567-7

    Article  ADS  CAS  Google Scholar 

  2. Lansky, J., Rahmani, A. M., Zandavi, S. M., et al. (2022). A Q-learning-based routing scheme for smart air quality monitoring system using flying ad hoc networks. Science and Reports, 12, 20184. https://doi.org/10.1038/s41598-022-20353-x

    Article  ADS  CAS  Google Scholar 

  3. Koelemeij, J. C. J., Dun, H., Diouf, C. E. V., et al. (2022). A hybrid optical–wireless network for decimetre-level terrestrial positioning. Nature, 611, 473–478. https://doi.org/10.1038/s41586-022-05315-7

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Yuan, P., Wu, H., Zhao, X., et al. (2017). Percolation-theoretic bounds on the cache size of nodes in mobile opportunistic networks. Science and Reports, 7, 5662. https://doi.org/10.1038/s41598-017-05988-5

    Article  ADS  CAS  Google Scholar 

  5. Chen, H., & Wu, C. (2021). Contact ability-based topology control for predictable delay-tolerant networks. Science and Reports, 11, 22566. https://doi.org/10.1038/s41598-021-01864-5

    Article  ADS  CAS  Google Scholar 

  6. Marwah, G. P. K., & Jain, A. (2022). A hybrid optimization with ensemble learning to ensure VANET network stability based on performance analysis. Science and Reports, 12, 10287. https://doi.org/10.1038/s41598-022-14255-1

    Article  ADS  CAS  Google Scholar 

  7. Pascacio, P., Torres-Sospedra, J., Jiménez, A. R., et al. (2022). Mobile device-based bluetooth low energy database for range estimation in indoor environments. Scientific Data, 9, 281. https://doi.org/10.1038/s41597-022-01406-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bergeron, H., Sinclair, L. C., Swann, W. C., et al. (2019). Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nature Communications, 10, 1819. https://doi.org/10.1038/s41467-019-09768-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heinen, J. H., Florens, F. B. V., Baider, C., et al. (2023). Novel plant–frugivore network on Mauritius is unlikely to compensate for the extinction of seed dispersers. Nature Communications, 14, 1019. https://doi.org/10.1038/s41467-023-36669-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaporski, L., Shofer, N., Bodey, J. H., et al. (2023). Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nature Nanotechnology. https://doi.org/10.1038/s41565-022-01282-2

    Article  PubMed  Google Scholar 

  11. Jackson, R. L., Rogers, T. T., & Lambon Ralph, M. A. (2021). Reverse-engineering the cortical architecture for controlled semantic cognition. Nature Human Behaviour, 5, 774–786. https://doi.org/10.1038/s41562-020-01034-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fisher, Y. E., Marquis, M., D’Alessandro, I., et al. (2022). Dopamine promotes head direction plasticity during orienting movements. Nature, 612, 316–322. https://doi.org/10.1038/s41586-022-05485-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parkinson, R. H., Little, J. M., & Gray, J. R. (2017). A sublethal dose of a neonicotinoid insecticide disrupts visual processing and collision avoidance behaviour in Locusta migratoria. Science and Reports, 7, 936. https://doi.org/10.1038/s41598-017-01039-1

    Article  ADS  CAS  Google Scholar 

  14. Mengaldo, G., Renda, F., Brunton, S. L., et al. (2022). A concise guide to modelling the physics of embodied intelligence in soft robotics. Nat Rev Phys, 4, 595–610. https://doi.org/10.1038/s42254-022-00481-z

    Article  Google Scholar 

  15. Taylor, J. A., Hasegawa, M., Benoit, C. M., et al. (2021). Single cell plasticity and population coding stability in auditory thalamus upon associative learning. Nature Communications, 12, 2438. https://doi.org/10.1038/s41467-021-22421-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Besse, J. C., Reuer, K., Collodo, M. C., et al. (2020). Realizing a deterministic source of multipartite-entangled photonic qubits. Nature Communications, 11, 4877. https://doi.org/10.1038/s41467-020-18635-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, A., Osamu, Y., & Chen, L. (2020). Multilayer optical thin film design with deep Q learning. Science and Reports, 10, 12780. https://doi.org/10.1038/s41598-020-69754-w

    Article  ADS  CAS  Google Scholar 

  18. Sajedian, I., Lee, H., & Rho, J. (2019). Double-deep Q-learning to increase the efficiency of metasurface holograms. Science and Reports, 9, 10899. https://doi.org/10.1038/s41598-019-47154-z

    Article  ADS  CAS  Google Scholar 

  19. Rahmani, A. M., Ali, S., Malik, M. H., et al. (2022). An energy-aware and Q-learning-based area coverage for oil pipeline monitoring systems using sensors and Internet of Things. Science and Reports, 12, 9638. https://doi.org/10.1038/s41598-022-12181-w

    Article  ADS  CAS  Google Scholar 

  20. Zolfaghari, M., Masoudi, S. F., Rahmani, F., et al. (2022). Thermal neutron beam optimization for PGNAA applications using Q-learning algorithm and neural network. Science and Reports, 12, 8635. https://doi.org/10.1038/s41598-022-12187-4

    Article  ADS  CAS  Google Scholar 

  21. Lindig-León, C., Schmid, G., & Braun, D. A. (2021). Nash equilibria in human sensorimotor interactions explained by Q-learning with intrinsic costs. Science and Reports, 11, 20779. https://doi.org/10.1038/s41598-021-99428-0

    Article  ADS  CAS  Google Scholar 

  22. Ardulov, V., Martinez, V. R., Somandepalli, K., et al. (2021). Robust diagnostic classification via Q-learning. Science and Reports, 11, 11730. https://doi.org/10.1038/s41598-021-90000-4

    Article  ADS  CAS  Google Scholar 

  23. Sresakoolchai, J., & Kaewunruen, S. (2023). Railway infrastructure maintenance efficiency improvement using deep reinforcement learning integrated with digital twin based on track geometry and component defects. Science and Reports, 13, 2439. https://doi.org/10.1038/s41598-023-29526-8

    Article  ADS  CAS  Google Scholar 

  24. Cai, M., Xiao, S., Li, J., et al. (2023). Safe reinforcement learning under temporal logic with reward design and quantum action selection. Science and Reports, 13, 1925. https://doi.org/10.1038/s41598-023-28582-4

    Article  ADS  CAS  Google Scholar 

  25. Van Slooten, J. C., Jahfari, S., & Theeuwes, J. (2019). Spontaneous eye blink rate predicts individual differences in exploration and exploitation during reinforcement learning. Science and Reports, 9, 17436. https://doi.org/10.1038/s41598-019-53805-y

    Article  ADS  CAS  Google Scholar 

  26. Cao, Z., Jiang, K., Zhou, W., et al. (2023). Continuous improvement of self-driving cars using dynamic confidence-aware reinforcement learning. Nature Machine Intelligence, 5, 145–158. https://doi.org/10.1038/s42256-023-00610-y

    Article  Google Scholar 

  27. Kuprikov, E., Kokhanovskiy, A., Serebrennikov, K., et al. (2022). Deep reinforcement learning for self-tuning laser source of dissipative solitons. Science and Reports, 12, 7185. https://doi.org/10.1038/s41598-022-11274-w

    Article  ADS  CAS  Google Scholar 

  28. Peng, G., Liao, J., Guan, S., et al. (2022). A pushing-grasping collaborative method based on deep Q-network algorithm in dual viewpoints. Science and Reports, 12, 3927. https://doi.org/10.1038/s41598-022-07900-2

    Article  ADS  CAS  Google Scholar 

  29. Wu, X., Li, R., He, Z., et al. (2023). A value-based deep reinforcement learning model with human expertise in optimal treatment of sepsis. npj Digital Medicine, 6, 15. https://doi.org/10.1038/s41746-023-00755-5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fan, C., Shen, M., Nussinov, Z., et al. (2023). Searching for spin glass ground states through deep reinforcement learning. Nature Communications, 14, 725. https://doi.org/10.1038/s41467-023-36363-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris, R., Dezfouli, A., Griffiths, K., et al. (2014). Action-value comparisons in the dorsolateral prefrontal cortex control choice between goal-directed actions. Nature Communications, 5, 4390. https://doi.org/10.1038/ncomms5390

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529–533. https://doi.org/10.1038/nature14236

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Xu, T., Zhou, X., Kanen, J. W., et al. (2023). Angiotensin blockade enhances motivational reward learning via enhancing striatal prediction error signaling and frontostriatal communication. Molecular Psychiatry. https://doi.org/10.1038/s41380-023-02001-6

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ogasawara, A., Ohmura, Y., & Kuniyoshi, Y. (2020). Reward sensitivity differs depending on global self-esteem in value-based decision-making. Science and Reports, 10, 21525. https://doi.org/10.1038/s41598-020-78635-1

    Article  ADS  CAS  Google Scholar 

  35. Youssef, S. M., Soliman, M., Saleh, M. A., et al. (2022). Design and control of soft biomimetic pangasius fish robot using fin ray effect and reinforcement learning. Science and Reports, 12, 21861. https://doi.org/10.1038/s41598-022-26179-x

    Article  ADS  CAS  Google Scholar 

  36. Yao, B., Xu, W., Shen, T., et al. (2023). Digital twin-based multi-level task rescheduling for robotic assembly line. Science and Reports, 13, 1769. https://doi.org/10.1038/s41598-023-28630-z

    Article  ADS  CAS  Google Scholar 

  37. Rajakumari, K., Punitha, P., Kumar, R., & Suresh, C. (2020). Improvising packet delivery and reducing delay ratio in mobile ad hoc network using neighbor coverage-based topology control algorithm. International Journal of Communication Systems. https://doi.org/10.1002/dac.4260

    Article  Google Scholar 

  38. Lakshmana Kumar, R., Subramanian, R., & Karthik, S. (2022). A novel approach to improve network validity using various soft computing techniques. Journal of Intelligent & Fuzzy Systems, 43(6), 7937–7948.

    Article  Google Scholar 

  39. Rao, P., Anand, M., Daniel, A., Sivaparthipan, C. B., Kirubakaran, S., Gnanasigamani, L., & Punitha, P. (2023). Millimeter assisted wave technologies in 6G assisted wireless communication systems: A new paradigm for 6G collaborative learning. Wireless Networks. https://doi.org/10.1007/s11276-023-03324-6

    Article  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the General Research Funding program grant code (NU/DRP/SERC/12/15).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and methodology of this study, the assessment of the outcomes and the writing of the manuscript.

Corresponding author

Correspondence to Bakri Hossain Awaji.

Ethics declarations

Conflict of interest

Authors do not have any conflicts.

Data availability statement

No datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awaji, B.H., Kamruzzaman, M.M., Althuniabt, A. et al. Novel multiple access protocols against Q-learning-based tunnel monitoring using flying ad hoc networks. Wireless Netw 30, 987–1011 (2024). https://doi.org/10.1007/s11276-023-03534-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03534-y

Keywords

Navigation