Skip to main content
Log in

A wireless network-based machine intelligence model for green tourism satisfaction analysis

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper proposes a wireless network-based machine intelligence model to enhance the predictive capability of green tourism satisfaction in regions with cultural differences. The model combines big data analysis techniques and machine learning algorithms to collect tourist data through intelligent machines and devices. Analyzing tourists’ behavior and preferences establishes a reliable prediction model to effectively assess tourists’ satisfaction with green tourism. Additionally, the paper constructs a distributed integration scheduling and feature mining model of green tourism satisfaction, which extracts relevant information features of big statistical data using an integration feature detection method. Furthermore, the paper establishes a fuzzy network structure model and designs the objective function of green tourism satisfaction prediction through decision scheduling and parameter optimization. The model’s parameter-weighted learning enhances the optimization prediction ability of green tourism satisfaction under regional cultural differences. The paper also carries out green tourism satisfaction prediction and tourists’ preference feature analysis using the fuzzy big data matching feature clustering method. The fuzzy network block fusion and clustering results also enable tourists’ preference behavior feature analysis, further improving the predictive capability of green tourism satisfaction under regional cultural differences. The simulation results demonstrate high accuracy and good optimization ability, ultimately improving green tourism satisfaction prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. ZabihAllah, T. (2022). Enhancing memorable experiences, tourist satisfaction, and revisit intention through smart tourism technologies. Sustainability, 14(5), 2721–2728.

    Article  Google Scholar 

  2. Yang, S., Li, Q., Li, W., Li, X., & Liu, A. (2022). Dual-level representation enhancement on characteristic and context for image-text retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 32(11), 8037–8050. https://doi.org/10.1109/TCSVT.2022.3182426

    Article  Google Scholar 

  3. Rajeni Nagarajan, J., & Jothi, A. A. (2022). Analysing traveller ratings for tourist satisfaction and tourist spot recommendation. International Journal of Business Intelligence and Data Mining., 20(2), 208–234.

    Article  Google Scholar 

  4. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D., & Chen, J. (2017). Situation-aware dynamic service coordination in an IoT environment. IEEE/ACM Transactions on Networking, 25(4), 2082–2095. https://doi.org/10.1109/TNET.2017.2705239

    Article  Google Scholar 

  5. Josip, M., Damir, K., & Maja, Š. (2021). The factor structure of medical tourist satisfaction: exploring key drivers of choice, delight, and frustration. Journal of Hospitality & Tourism Research, 45(8), 1489–1512.

    Article  Google Scholar 

  6. Qiao, G., Song, H., Prideaux, B., & Huang, S. S. (2023). The “unseen” tourism: Travel experience of people with visual impairment. Annals of Tourism Research, 99, 103542. https://doi.org/10.1016/j.annals.2023.103542

    Article  Google Scholar 

  7. Malik, S., & Kim, D. H. (2019). Optimal travel route recommendation mechanism based on neural networks and particle swarm optimization for efficient tourism using tourist vehicular data. Sustainability, 11(12), 1–26.

    Article  Google Scholar 

  8. Li, L., Wu, X., Kong, M., Liu, J., & Zhang, J. (2023). Quantitatively interpreting residents happiness prediction by considering factor-factor interactions. IEEE Transactions on Computational Social Systems. https://doi.org/10.1109/TCSS.2023.3246181

    Article  PubMed  PubMed Central  Google Scholar 

  9. Andria, J., Tollo, G. D., & Pesenti, R. (2021). Fuzzy multi-criteria decision-making: An entropy-based approach to assess tourism sustainability. Tourism Economics, 27(1), 168–186.

    Article  Google Scholar 

  10. Zhou, G., Deng, R., Zhou, X., Long, S., Li, W., Lin, G., & Li, X. (2021). Gaussian inflection point selection for LiDAR hidden echo signal decomposition. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2021.3107438

    Article  Google Scholar 

  11. Islami, M. Z., & Nurhayati, G. A. (2021). Landscape planning of historical tourism route of Siak Sultanate in Siak Sri Indrapura, Riau. IOP Conference Series: Earth and Environmental Science, 879(1), 012006.

    Google Scholar 

  12. Jiang, S., Zhao, C., Zhu, Y., Wang, C., Du, Y., & LeiWang, W. L. (2022). A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems. Journal of Advanced Transportation, 2022, 1–12. https://doi.org/10.1155/2022/3815306

    Article  Google Scholar 

  13. Xie, X., Tian, Y., & Wei, G. (2022). Deduction of sudden rainstorm scenarios: Integrating decision makers’ emotions, dynamic Bayesian network and DS evidence theory. Natural Hazards. https://doi.org/10.1007/s11069-022-05792-z

    Article  Google Scholar 

  14. Zhou, G., Zhou, X., Song, Y., Xie, D., Wang, L., & YanWang, G. H. (2021). Design of supercontinuum laser hyperspectral light detection and ranging (LiDAR) (SCLaHS LiDAR). International Journal of Remote Sensing, 42(10), 3731–3755. https://doi.org/10.1080/01431161.2021.1880662

    Article  ADS  Google Scholar 

  15. Zhao, J., Gao, F., Jia, W., Yuan, W., & Jin, W. (2023). Integrated sensing and communications for UAV communications with jittering effect. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2023.3243590

    Article  Google Scholar 

  16. Wu, Z., Cao, J., Wang, Y., Wang, Y., & ZhangWu, L. J. (2020). hPSD: A hybrid PU-learning-based spammer detection model for product reviews. IEEE transactions on cybernetics, 50(4), 1595–1606. https://doi.org/10.1109/TCYB.2018.2877161

    Article  PubMed  Google Scholar 

  17. Liu, G. (2021). Data collection in MI-assisted wireless powered underground sensor networks: Directions, recent advances, and challenges. IEEE Communications Magazine, 59(4), 132–138. https://doi.org/10.1109/MCOM.001.2000921

    Article  Google Scholar 

  18. Zhang, X., Wen, S., Yan, L., Feng, J., & Xia, Y. (2022). A hybrid-convolution spatial-temporal recurrent network for traffic flow prediction. The Computer Journal. https://doi.org/10.1093/comjnl/bxac171

    Article  Google Scholar 

  19. Chen, Y., Chen, Z., Guo, D., Zhao, Z., & LinZhang, T. C. (2022). Underground space use of urban built-up areas in the central city of Nanjing: Insight based on a dynamic population distribution. Underground Space, 7(5), 748–766. https://doi.org/10.1016/j.undsp.2021.12.006

    Article  Google Scholar 

  20. Li, X., & Sun, Y. (2021). Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Computing and Applications, 33(14), 8227–8235. https://doi.org/10.1007/s00521-020-04958-9

    Article  Google Scholar 

  21. Liu, X., Zhou, G., Kong, M., Yin, Z., Li, X., & YinZheng, L. W. (2023). Developing multi-labelled corpus of twitter short texts: A semi-automatic method. Systems, 11(8), 390. https://doi.org/10.3390/systems11080390

    Article  Google Scholar 

  22. Sun, H., Fan, M., & Sharma, A. (2021). Design and implementation of construction prediction and management platform based on building information modelling and three-dimensional simulation technology in industry 4.0. IET Collaborative Intelligent Manufacturing. https://doi.org/10.1049/cim2.12019

    Article  Google Scholar 

  23. Jiang, Y., Liu, S., Li, M., Zhao, N., & Wu, M. (2022). A new adaptive co-site broadband interference cancellation method with auxiliary channel. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2022.10.025

    Article  Google Scholar 

  24. Chen, B., Hu, J., Zhao, Y., & Ghosh, B. K. (2022). Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(10), 6618–6629. https://doi.org/10.1109/TSMC.2022.3148295

    Article  Google Scholar 

  25. Tong, D., Sun, Y., Tang, J., Luo, Z., Lu, J., & Liu, X. (2023). Modeling the interaction of internal and external systems of rural settlements: The case of Guangdong, China. Land Use Policy, 132, 106830. https://doi.org/10.1016/j.landusepol.2023.106830

    Article  Google Scholar 

  26. Cao, B., Zhao, J., Yang, P., Gu, Y., Muhammad, K., Rodrigues, J. J., & de Albuquerque, V. H. (2019). Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Transactions on Industrial Informatics, 16(5), 3597–605.

    Article  Google Scholar 

  27. Cheng, L., Yin, F., Theodoridis, S., Chatzis, S., & Chang, T. (2022). Rethinking Bayesian learning for data analysis: The art of prior and inference in sparsity-aware modeling. IEEE Signal Processing Magazine. https://doi.org/10.1109/MSP.2022.3198201

    Article  Google Scholar 

  28. Lu, S., Liu, M., Yin, L., Yin, Z., Liu, X., Zheng, W., & Kong, X. (2023). The multi-modal fusion in visual question answering: A review of attention mechanisms. PeerJ Computer Science, 9, e1400. https://doi.org/10.7717/peerj-cs.1400

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yacob, S., Erida, E., & Siregar, A. P. (2021). The loyalty of rural tourism destination: A perspective of destination quality perception, satisfaction, and behavior intention in Indonesia. International Journal of Research in Business and Social Science, 10(7), 257–265.

    Google Scholar 

  30. Sheng, Y., Ding, N., Zheng, H. T., Li, Y., & Yang, M. (2021). modeling relation paths for knowledge graph completion. IEEE Transactions on Knowledge and Data Engineering, 33(11), 3607–3617. https://doi.org/10.1109/TKDE.2020.2970044

    Article  Google Scholar 

  31. Atsz, O., Leoni, V., & Akova, O. (2020). Determinants of tourists’ length of stay in cultural destinations: One-night versus longer stays. Journal of Hospitality and Tourism Insights, 5(1), 62–78.

    Article  Google Scholar 

  32. Georgoula, V. (2021). Tourism and cultural sustainability: Views and prospects from cyclades, Greece. Sustainability, 14(1), 307.

    Article  Google Scholar 

  33. Liu, X., Shi, T., Zhou, G., Liu, M., Yin, Z., Yin, L., & Zheng, W. (2023). Emotion classification for short texts: An improved multi-label method. Humanities and Social Sciences Communications, 10(1), 306. https://doi.org/10.1057/s41599-023-01816-6

    Article  Google Scholar 

  34. Li, T., Li, Y., Hoque, M. A., XiaTarkoma, T. S., & Hui, P. (2022). To what extent we repeat ourselves? Discovering daily activity patterns across mobile app usage. IEEE Transactions on Mobile Computing, 21(4), 1492–1507. https://doi.org/10.1109/TMC.2020.3021987

    Article  Google Scholar 

  35. Griffin, L. S. (2021). Nature-based, “Satoyama” tourism satisfaction model: An examination of motivation as a mediator in domestic and international tourists in Japan. Open Journal of Social Sciences, 9(10), 380–393.

    Article  Google Scholar 

  36. Akarapu, M., Sunil, G., Donthamala, K. R., et al. (2020). Heterogeneous inter-clue designing of POI popularity analysis with discrepancy tourism data. IOP Conference Series: Materials Science and Engineering, 981(2), 022033.

    Article  Google Scholar 

  37. Wu, B., Gu, Q., Liu, Z., & Liu, J. (2023). Clustered institutional investors, shared ESG preferences and low-carbon innovation in family firm. Technological Forecasting and Social Change, 194, 122676. https://doi.org/10.1016/j.techfore.2023.122676

    Article  Google Scholar 

  38. Molina-Gómez, J., Mercadé-Melé, P., Almeida-García, F., et al. (2021). New perspectives on satisfaction and loyalty in festival tourism: The function of tangible and intangible attributes. PLoS ONE, 16(2), 1–17.

    Article  Google Scholar 

  39. Zhou, G., Li, W., Zhou, X., Tan, Y., Lin, G., Li, X., & Deng, R. (2021). An innovative echo detection system with STM32 gated and PMT adjustable gain for airborne LiDAR. International Journal of Remote Sensing, 42(24), 9187–9211. https://doi.org/10.1080/01431161.2021.1975844

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The paper did not receive any financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Li.

Ethics declarations

Conflict of interest

Declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X. A wireless network-based machine intelligence model for green tourism satisfaction analysis. Wireless Netw 30, 1107–1120 (2024). https://doi.org/10.1007/s11276-023-03546-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03546-8

Keywords

Navigation