Abstract
A nonstandard optimized packing convex polygons in a rectangular container is considered. The shapes of the polygons are not fixed: the polygons can be compressed/stretched in certain limits along the principal axes, but their areas remain constant. The polygons must be placed completely in the container without overlapping under free translations and rotations. The objective is to define the shapes of the polygons and their locations to minimize the height of the container. Non-overlapping and containment conditions for the stretched polygons are presented using the phi-function technique. The overall packing problem is formulated in the form of a nonconvex nonlinear programming problem. A solution approach is proposed based on the multistart strategy. To illustrate the main steps of the solution technique a numerical example is provided. Directions for future research are discussed. Our interest in this class of packing problems is motivated by studying properties of porous media under external force. Elements of porous media can be deformed under pressure, but the mass of each particle is conserved. In two-dimensional case this corresponds to the area conservation.


Similar content being viewed by others
References
Yagiura, M., Umetani, S., Imahori, S., & Hu, Y. (2024). Cutting and packing problems. From the perspective of combinatorial optimization. Springer. ISBN 978-4-431-55290-1
Fischer, A., & Scheithauer, G. (2015). Cutting and packing problems with placement constraints. In G. Fasano & J. Pinter (Eds.), Optimized packings with applications. Springer optimization and applications (Vol. 105, pp. 119–156). Springer.
Kallrath, J. (2021). Cutting and packing beyond and within mathematical programming. Business optimisation using mathematical programming. Springer. https://doi.org/10.1007/978-3-030-73237-0_15
Jiang, J., Garikipati, K., & Rudraraju, S. (2019). A diffuse interface framework for modeling the evolution of multi-cell aggregates as a soft packing problem driven by the growth and division of cells. Bulletin of Mathematical Biology, 81, 3282–3300.
Yuan, Q., Li, Z., Gao, Y., Wang, Y. H., & Li, X. (2019). Local responses in 2D assemblies of elliptical rods when subjected to biaxial shearing. Acta Geotechnica, 14, 1685–1697.
Chen, Y., Yuan, M., Wang, Z., Zhao, Y., Li, J., Hu, B., & Xia, C. (2021). Structural characterization and statistical properties of jammed soft ellipsoid packing. Soft Matter, 17, 2963. https://doi.org/10.1039/d0sm01699c
Young, F. Y., Chris, C. N., ChuLuk, W. S., & Wong, Y. C. (2001). Handling soft modules in general nonslicing floorplan using Lagrangian relaxation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(5), 687–692.
Ji, P., Hea, K., Jina, Y., Lana, H., & Li, C. (2017). An iterative merging algorithm for soft rectangle packing and its extension for application of fixed-outline floorplanning of soft modules. Computers and Operations Research, 86, 110–123.
Bui, Q. T., Vidal, T., & Hà, M. H. (2019). On three soft rectangle packing problems with guillotine constraints. Journal of Global Optimization, 74, 45–62. https://doi.org/10.1007/s10898-019-00741-w
Zuo, Q. et al. (2022). The three-dimensional bin packing problem for deformable items. In IEEE international conference on industrial engineering and engineering management (IEEM), Kuala Lumpur, Malaysia (pp. 0911–0918). https://doi.org/10.1109/IEEM55944.2022.9989600
Nagamochi, H. (2006). Packing soft rectangles. International Journal of Foundations of Computer Science, 17(5), 1165–1178.
Ibaraki, T., & Nakamura, K. (2006). Packing problems with soft rectangles. In: F. Almeida et al. (Eds.), Hybrid metaheuristics. HM 2006. Lecture Notes in Computer Science (Vol. 4030, pp. 13–27). Springer. https://doi.org/10.1007/11890584_2
Lewis, B. A., & Robinson, J. S. (1978). Triangulation of planar regions with applications. The Computer Journal, 21(4), 324–332. https://doi.org/10.1093/comjnl/21.4.324
Blunt, M. (2017). Multiphase flow in permeable media: A pore-scale perspective. Cambridge University Press. https://doi.org/10.1017/9781316145098
Eichheimer, P., Thielmann, M., Popov, A., Golabek, G. J., Fujita, W., Kottwitz, M. O., & Kaus, B. J. P. (2019). Pore-scale permeability prediction for Newtonian and non-Newtonian fluids. Solid Earth, 10(5), 1717–1731. https://doi.org/10.5194/se-10-1717-2019
Dong, X., Liu, H., Hou, J., Zhang, Z., & Chen, Z. (2015). Multi-thermal fluid assisted gravity drainage process: A new improved-oil-recovery technique for thick heavy oil reservoir. Journal of Petroleum Science and Engineering, 133, 1–11. https://doi.org/10.1016/j.petrol.2015.05.001
Al-Nakhli, A., Tariq, Z., Mahmoud, M., Abdulraheem, A., & Al Shehri, D. (2019). A novel thermochemical fracturing approach to reduce fracturing pressure of high strength rocks. In Abu Dhabi international petroleum exhibition and conference. SPE-197593-MS. https://doi.org/10.2118/197593-MS
Allgower, E. L., & Schmidt, P. H. (1986). Computing volumes of polyhedra. Mathematics of Computation, 46(173), 171–174.
Braden, B. (1986). The Surveyor’s Area Formula. The College Mathematics Journal, 17(4), 326–337.
Kallrath, J., Romanova, T., Pankratov, A., Litvinchev, I., & Infante, L. (2023). Packing convex polygons into minimum-perimeter convex hulls. Journal of Global Optimization, 85(1), 39–59. https://doi.org/10.1007/s10898-022-01194-4
Stoyan, Yu., Pankratov, A., & Romanova, T. (2016). Cutting and packing problems for irregular objects with continuous rotations: Mathematical modeling and nonlinear optimization. Journal of the Operational Research Society, 67(5), 786–800. https://doi.org/10.1057/jors.2015.94
Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., & Marmolejo, J. A. (2019). Decomposition algorithm for irregular placement problems. In P. Vasant, I. Zelinka, & G. W. Weber (Eds.), Intelligent computing and optimization. ICO 2019. Advances in intelligent systems and computing (Vol. 1072, pp. 214–221). Springer. https://doi.org/10.1007/978-3-030-33585-4_21
Wachter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y
Litvinchev, I., Infante, L., Romanova, T., Martinez-Noa, A., & Gutierrez, L. (2024). Optimized packing soft convex polygons. In J. A. Marmolejo-Saucedo, R. Rodríguez-Aguilar, P. Vasant, I. Litvinchev, & B. M. Retana-Blanco (Eds.), Computer science and engineering in health services. COMPSE 2022 EAI/Springer innovations in communication and computing (pp. 89–97). Springer. https://doi.org/10.1007/978-3-031-34750-4_7
Kropat, E., Türkay, M., & Weber, G. W. (2020). Introduction to the special issue on fuzzy analytics and stochastic methods in neurosciences. IEEE Transactions on Fuzzy Systems, 28(1), 1–4. https://doi.org/10.1109/TFUZZ.2019.2959462
Tikidji-Hamburyan, R. A., Kropat, E., & Weber, G. W. (2022). Preface: Operations research in neuroscience III. Annals of operations research, 312(2), 1143–1145. https://doi.org/10.1007/s10479-022-04697-1
Purutçuoğlu, V., Weber, G. W., & Farnoudkia, H. (Eds.). (2022). Operations research: New paradigms and emerging applications. CRC Press. https://doi.org/10.1201/9781003324508
Ewertowski, T., Güldoğuş, B. Ç., Kuter, S., Akyüz, S., Weber, G. W., Sadłowska-Wrzesińska, J., & Racek, E. (2023). The use of machine learning techniques for assessing the potential of organizational resilience. Central European Journal of Operations Research. https://doi.org/10.1007/s10100-023-00875-z
Romanova, T., Litvinchev, I., & Pankratov, A. (2020). Packing ellipsoids in an optimized cylinder. European Journal of Operational Research, 285(2), 429–443. https://doi.org/10.1016/j.ejor.2020.01.051
Romanova, T., Bennell, J., Stoyan, Y., & Pankratov, A. (2018). Packing of concave polyhedra with continuous rotations using nonlinear optimization. European Journal of Operational Research, 268(1), 37–53. https://doi.org/10.1016/j.ejor.2018.01.025
Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Kravchenko, O., Duryagina, Z., Melashenko, O., & Chugai, A. (2023). Optimized packing soft ellipses. In M. S. Manshahia, I. S. Litvinchev, G. W. Weber, J. Thomas, & P. Vasan (Eds.), Human-assisted intelligent computing: Modelling, simulations and applications (pp. 9-1–9-16). IOP Publishing. https://doi.org/10.1088/978-0-7503-4801-0ch9
Fischer, A., Litvinchev, I., Romanova, T., Stetsyuk, P., & Yaskov, G. (2023). Quasi-packing different spheres with ratio conditions in a spherical container. Mathematics. https://doi.org/10.3390/math11092033
Scheithauer, U., Romanova, T., Pankratov, O., Schwarzer-Fischer, E., Schwentenwein, M., Ertl, F., & Fischer, A. (2023). Potentials of numerical methods for increasing the productivity of additive manufacturing processes. Ceramics, 6(1), 630–650. https://doi.org/10.3390/ceramics6010038
Duriagina, Z., Pankratov, A., Romanova, T., Litvinchev, I., Bennell, J., Lemishka, I., & Maximov, S. (2023). Optimized packing titanium alloy powder particles. Computation. https://doi.org/10.3390/computation11020022
Duriagina, Z., Lemishka, I., Litvinchev, I., Marmolejo, J. A., Pankratov, A., Romanova, T., & Yaskov, G. (2021). Optimized filling of a given cuboid with spherical powders for additive manufacturing. Journal of the Operations Research Society of China, 9(4), 853–868. https://doi.org/10.1007/s40305-020-00314-9
Pankratov, A., Romanova, T., & Litvinchev, I. (2020). Packing ellipses in an optimized rectangular container. Wireless Networks, 26(7), 4869–4879. https://doi.org/10.1007/s11276-018-1890-1
Fasano, G., & Pintér, J. D. (2019). Modeling and optimization in space engineering, (SOIA, 144). Springer.
Leao, A. S., Toledo, F. M. B., Oliveira, J. F., Carravilla, M. A., & Alvarez-Valdés, R. (2020). Irregular packing problems: A review of mathematical models. European Journal of Operational Research, 282, 803–822. https://doi.org/10.1016/j.ejor.2019.04.045
Li, J., An, X., Wang, J., Zhao, H., Zou, R., Dong, K., & Gou, D. (2020). Experimental study on 3D vibrated packing densification of mono-sized dodecahedral particles. Powder Technology, 367, 703–712. https://doi.org/10.1016/j.powtec.2020.04.020
Litvinchev, I., & Ozuna, L. (2014). Integer programming formulations for approximate packing circles in a rectangular container. Mathematical Problems in Engineering, 2014, 317697. https://doi.org/10.1155/2014/317697
Litvinchev, I., & Ozuna, L. (2012). Lagrangian bounds and a heuristic for the two-stage capacitated facility location problem. International Journal of Energy Optimization and Engineering, 1(1), 60–72. https://doi.org/10.4018/ijeoe.2012010104
Litvinchev, I. (2007). Refinement of Lagrangian bounds in optimization problems. Computational Mathematics and Mathematical Physics, 47(7), 1101–1108. https://doi.org/10.1134/S0965542507070032
Acknowledgements
This work has been supported by the British Academy (Grant #100072) and the Volkswagen Foundation (Grant #97775).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Data availability
Data is available under demand.
Consent for publication
All authors have agreed and given their consent for submission of this paper to Wireless Networks.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bennell, J., Litvinchev, I., Pankratov, A. et al. Packing stretched convex polygons in an optimized rectangle. Wireless Netw 30, 7369–7376 (2024). https://doi.org/10.1007/s11276-023-03642-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-023-03642-9