Skip to main content

Advertisement

Log in

Performance evaluation of multiple relay SWIPT enabled cooperative NOMA network in the presence of interference

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Simultaneous wireless information and power transmission (SWIPT) allows the use of RF signals for both information detection and energy harvesting. Integration of cooperation, NOMA and SWIPT can provide energy-efficient, reliable, and spectral-efficient networks. Therefore, this study aims to design energy harvesting-enabled cooperative NOMA (C-NOMA) networks. This work investigates relay selection for multiple relay downlink C-NOMA networks with SWIPT in the presence of interference. The analytical closed-form outage probability expressions for the proposed relay selection are derived. Subsequently, the impact of various parameters, including the number of available relay nodes, energy harvesting parameters, and energy conversion efficiency, is analyzed on the performance of proposed networks. The finding showed that system performance improves with the number of intermediate relaying nodes, transmit power, and energy conversion efficiency. Comparative analysis of NOMA and time division multiple access TDMA proved the superiority of NOMA over traditional OMA schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data sources used in this study are available upon request from the corresponding author.

References

  1. Ding, Z., et al. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  2. Liaqat, M., et al. (2020). Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: An overview. Wireless Networks, 26(1), 181–203.

    Article  MathSciNet  Google Scholar 

  3. Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689.

    Article  Google Scholar 

  4. Lin, F., Huang, H., Luo, T & Yue, G. (2007). Impact of relay location to SER performance with different power allocation methods in cooperative system. In International Conference on Communications, Circuits and Systems, 2007. ICCCAS 2007. 2007. IEEE.

  5. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). Hybrid decode-forward & amplify-forward relaying with non-orthogonal multiple access. IEEE Access, 4, 4912–4921.

    Article  Google Scholar 

  6. Zhang, D., Liu, Y., Ding, Z., Zhou, Z., Nallanathan, A., & Sato, T. (2017). Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G. IEEE Transactions on Communications, 65, 4777–4790.

    Article  Google Scholar 

  7. Men, J., Ge, J., & Zhang, C. (2017). Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-mFading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.

    Article  Google Scholar 

  8. Yue, X., Liu, Y., Kang, S., & Nallanathan, A. (2017). Performance analysis of NOMA with fixed gain relaying over Nakagami-m fading channels. IEEE Access, 5, 1–1.

    Article  Google Scholar 

  9. Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  10. Liang, X., Wu, Y., Ng, D. W. K., Zuo, Y., Jin, S., & Zhu, H. (2017). Outage performance for cooperative NOMA transmission with an AF relay. IEEE Communications Letters, 21, 1–1.

    Article  Google Scholar 

  11. Alkhawatrah, M. (2022). The performance of supervised machine learning based relay selection in cooperative NOMA. IEEE Access, 11, 1570–1577.

    Article  Google Scholar 

  12. Diamanti, M., Tsiropoulou, E.E., & Papavassiliou, S. (2021). The joint power of NOMA and reconfigurable intelligent surfaces in SWIPT networks. In 2021 IEEE 22nd international workshop on signal processing advances in wireless communications (SPAWC). IEEE.

  13. Ren, Y., Ren, B., Zhang, X., Lv, T., Ni, W., & Lu, G. (2023). Impartial cooperation in SWIPT-assisted NOMA systems with random user distribution. IEEE Transactions on Vehicular Technology, 72, 10488–10504.

    Article  Google Scholar 

  14. Goktas, M.B., Dursun, Y. & Ding, Z. (2023). IRS and SWIPT-assisted full-duplex NOMA for 6G umMTC. IEEE Transactions on Green Communications and Networking.

  15. Zhao, N., Zhang, S., Richard Yu, F., Chen, Y., Nallanathan, A. & Leung, V.C.M. (2017). Exploiting interference for energy harvesting: A survey, research issues, and challenges. IEEE Access, 5, 10403–10421.

    Article  Google Scholar 

  16. Gu, Y., & Aissa, S. (2015). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14(11), 6425–6434.

    Article  Google Scholar 

  17. Elmorshedy, L., Leung, C. & Mousavifar. S.A. (2016). RF energy harvesting in DF relay networks in the presence of an interfering signal. In 2016 IEEE international conference on communications (ICC) (2016, pp. 1–6). IEEE.

  18. Do, D.-T., & Nguyen, H.-S. (2016). A tractable approach to analyzing the energy-aware two-way relaying networks in the presence of co-channel interference. EURASIP Journal on Wireless Communications and Networking, 2016(1), 271.

    Article  Google Scholar 

  19. Shaik, R. H., & Naidu, R. (2019). Performance evaluation of energy harvesting based DF system over Nakagami-m fading channels in the presence of co-channel interferences. Physical Communication, 36, 100758.

    Article  Google Scholar 

  20. Nguyen, T.-L. & Do, D.-T. (2018). Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access. Wireless Communications and Mobile Computing, 2018, 1–12.

    Google Scholar 

  21. Rauniyar, A., Engelstad, P. E., & Østerbø, O. N. (2019). Performance analysis of RF energy harvesting and information transmission based on NOMA with interfering signal for IoT relay systems. IEEE Sensors Journal, 19(17), 7668–7682.

    Article  Google Scholar 

  22. Yang, Z., et al. (2017). The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT. IEEE Transactions on Wireless Communications, 16(7), 4332–4343.

    Article  Google Scholar 

  23. Krikidis, I. (2015). Relay selection in wireless powered cooperative networks with energy storage. IEEE Journal on Selected Areas in Communications, 33(12), 2596–2610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahrukh Liaqat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$${\text{P}}_{1} = \Pr \left( {X < C_{1} \left( {CX_{I} + 1} \right)} \right) + \Pr \left( {C_{1} \left( {CX_{I} + N_{0} } \right) > { }X{ } < \frac{1}{{\rho_{s} }}\left( {\frac{{C_{2} }}{{X_{1} }} - \rho_{I} X_{I} } \right){ }} \right),$$
(A.1)

Where \(X={\left|{g}_{n}\right|}^{2},{X}_{1}={\left|{h}_{n1}\right|}^{2}, {X}_{I}=\sum_{i=1}^{L}{\left|{g}_{i}\right|}^{2}, C=\left(1-\xi \right){\rho }_{I} and {\rho }_{I}=\frac{{P}_{I}}{{N}_{0}}.\)

$$P_{1} = \mathop \smallint \limits_{0}^{\infty } F_{X} (C_{1} \left( {CX_{I} + 1 } \right)) f_{{X_{I} }} \left( x \right) dx + \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{\infty } \left( {F_{X} \left( {\frac{1}{{\rho_{s} }}\left( {\frac{{C_{2} }}{{X_{1} }} - \rho_{I} X_{I} } \right)} \right) - F_{X} \left( {C_{1} \left( {CX_{I} + 1} \right)} \right)} \right) f_{{X_{1} ,X_{I} }} \left( {x,y} \right) dxdy$$
(A.2)
$$= \mathop \smallint \limits_{0}^{\infty } F_{X} (C_{1} \left( {CX_{I} + N_{0} } \right)) f_{{X_{I} }} \left( x \right) dx + \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{\infty } \left( {F_{X} \left( {\frac{1}{{\rho_{s} }}\left( {\frac{{C_{2} }}{{X_{1} }} - \rho_{I} X_{I} } \right)} \right)} \right) f_{{X_{2} ,X_{I } }} \left( {x,y} \right) dxdy - \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{\infty } \left( {F_{X} (C_{1} \left( {CX_{I} + N_{0} } \right)} \right) f_{{X_{!} ,X_{I } }} \left( {x,y} \right) dxdy$$
(A.3)

As \({X}_{1},{X}_{2} and {X}_{I}\) are independent of each other, first and last term cancels out.

$$={\int }_{0}^{\infty }{\int }_{0}^{\infty }\left({F}_{X}\left(\frac{1}{{\rho }_{s}}\left(\frac{{C}_{2}}{{X}_{1}}-{\rho }_{I}{X}_{I}\right)\right)\right) { f}_{{X}_{1},{X}_{I }}\left(x,y\right) dxdy$$
(A.4)
$$=\frac{{\lambda }_{I}^{L}{\lambda }_{1}}{\Gamma ({\text{L}})}{\int }_{0}^{\infty }{\int }_{0}^{\infty }{\left(1-{e}^{-\frac{{\lambda }_{g}}{{\rho }_{s}}\left(\frac{{C}_{2}}{x}-{\rho }_{I}y\right)}\right)}^{M}{{{ e}^{-{\lambda }_{1}x}y}^{L-1} e}^{-{\lambda }_{I}y} dxdy$$
(A.5)

Using binomial expansion to further solve the P1

$$=1-\frac{{\lambda }_{I}^{L}{\lambda }_{1}}{\Gamma ({\text{L}})}\sum_{n=1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right) {\left(-1\right)}^{n+1}{\int }_{0}^{\infty }{\int }_{0}^{\infty }{e}^{-\frac{{n\lambda }_{g}}{{\rho }_{s}}\left(\frac{{C}_{2}}{x}-{\rho }_{I}y\right)}{{{ e}^{-{\lambda }_{1}x}y}^{L-1} e}^{-{\lambda }_{I}y} dxdy$$
(A.6)
$$=1-\frac{{\lambda }_{I}^{L}{\lambda }_{1}}{\Gamma ({\text{L}})}\sum_{n=1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right) {\left(-1\right)}^{n+1}{\int }_{0}^{\infty }{\int }_{0}^{\infty }{e}^{-\frac{{n\lambda }_{g}*{C}_{2}}{{\rho }_{s*x}}-{\lambda }_{1}x}*{{y}^{L-1} e}^{-y({\lambda }_{I}-\frac{n{\rho }_{I}{\lambda }_{g}}{{\rho }_{s}})} dxdy$$
(A.7)

\({\int }_{0}^{\infty }{e}^{-\frac{\beta }{4x}-\lambda x}=\sqrt{\beta /\lambda } {K}_{1}\sqrt{\beta \lambda }\) is used to solve above equation further,

$$=1-\frac{{\lambda }_{I}^{L}{\lambda }_{1}}{\Gamma ({\text{L}})}\sum_{n=1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right) {\left(-1\right)}^{n+1}\sqrt{\frac{4n{C}_{2}{\lambda }_{g}}{{\rho }_{s}{\lambda }_{1}}} {K}_{1}\sqrt{\frac{4n{C}_{2}{\lambda }_{g}{\lambda }_{1}}{{\rho }_{s}}}{\int }_{0}^{\infty }{{y}^{L-1} e}^{-y({\lambda }_{I}-\frac{n{\rho }_{I}{\lambda }_{g}}{{\rho }_{s}})} dy$$
(A.8)

From (3.381.4) of (Gradshteyn & Ryzhik, 2014), \(\underset{0}{\overset{\infty }{\int }}{x}^{v-1}{e}^{-\mu x}dx=\frac{1}{{\mu }^{v}}\Gamma (v)\)

$$P_{1} = 1 - \lambda_{I}^{L} \lambda_{1} \mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\frac{{\left( { - 1} \right)^{n + 1} }}{{\left( {\lambda_{I} - \frac{{n\rho_{I} \lambda_{g} }}{{\rho_{s} }}} \right)^{L} }}\sqrt {\frac{{4nC_{2} \lambda_{g} }}{{\rho_{s} \lambda_{1} }}} K_{1} \sqrt {\frac{{4nC_{2} \lambda_{g} \lambda_{1} }}{{\rho_{s} }}}$$
(A.9)

Which completes the proof.

$${P}_{2}={\text{Pr}}\left(\frac{{\left(1-\xi \right)P}_{s}{\alpha }_{1}{\left|{g}_{n}\right|}^{2}}{{\left(1-\xi \right)P}_{s}{\alpha }_{2}{\left|{g}_{n}\right|}^{2}+\sum_{i=1}^{L}{P}_{i}{\left|{g}_{i}\right|}^{2}+{N}_{0}}<{\in }_{1},\frac{{\left(1-\xi \right)P}_{s}{\alpha }_{2}{\left|{g}_{n}\right|}^{2}}{\sum_{i=1}^{L}{P}_{i}{\left|{g}_{i}\right|}^{2}+{N}_{0}}<{\in }_{2}\right)+{\text{Pr}}(\frac{{\left(1-\xi \right)P}_{s}{\alpha }_{1}{\left|{g}_{n}\right|}^{2}}{{\left(1-\xi \right)P}_{s}{\alpha }_{2}{\left|{g}_{n}\right|}^{2}+\sum_{i=1}^{L}{P}_{i}{\left|{g}_{i}\right|}^{2}+{N}_{0}}>{\in }_{1},\frac{{\left(1-\xi \right)P}_{s}{\alpha }_{2}{\left|{g}_{n}\right|}^{2}}{\sum_{i=1}^{L}{P}_{i}{\left|{g}_{i}\right|}^{2}+{N}_{0}}>{\in }_{2},\frac{{\alpha }_{1}{P}_{r}^{n}{\left|{h}_{n2}\right|}^{2}}{{\alpha }_{2}{P}_{r}^{n}{\left|{h}_{n2}\right|}^{2}+{N}_{0}}\le {\in }_{1}, \frac{{\alpha }_{1}{P}_{r}^{n}{\left|{h}_{n2}\right|}^{2}}{{N}_{0}}<{\in }_{2})$$

Appendix B

Let,

$$\begin{gathered} {\text{P}}_{2} = P_{2}^{1} + P_{2}^{2} \hfill \\ P_{2}^{1} = \Pr \left( {X \le + \frac{{C_{3} }}{{\rho_{s} }}(CX_{I} + 1} \right) \hfill \\ \end{gathered}$$
(B.1)

where \(X = \left| {g_{n} } \right|^{2} ,X_{2} = \left| {h_{n2} } \right|^{2} ,C_{3} = \left( {1 - \xi } \right)\rho_{I} and\, X_{I} = \mathop \sum \limits_{i = 1}^{L} \left| {g_{i} } \right|^{2}.\)

$${\text{P}}_{2}^{1} = \mathop \smallint \limits_{0}^{\infty } F_{X} (C_{3} \left( {CX_{i} + 1 } \right)) f_{{X_{I} }} \left( x \right) dx$$
(B.2)
$$P_{2}^{1} = \frac{{\lambda_{I}^{L} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \smallint \limits_{0}^{\infty } \left( {1 - e^{{ - \frac{{\lambda_{g} C_{3} }}{{\rho_{s} }}\left( {Cx + 1} \right)}} } \right)^{M} x^{L - 1} e^{{ - \lambda_{I} x}} dx$$
(B.3)
$$P_{2}^{1} = 1 - \frac{{\lambda_{I}^{L} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\left( { - 1} \right)^{n + 1} \mathop \smallint \limits_{0}^{\infty } x^{L - 1} e^{{ - n\frac{{\lambda_{g} C_{3} }}{{\rho_{s} }}\left( {Cx + 1} \right) - \lambda_{I} x}} dx$$
(B.4)
$$P_{2}^{1} = 1 - \frac{{\lambda_{I}^{L} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\left( { - 1} \right)^{n + 1} e^{{ - \frac{{n\lambda_{g} C_{3} }}{{\rho_{s} }}}} \mathop \smallint \limits_{0}^{\infty } x^{L - 1} e^{{x\left( { - \frac{{n\lambda_{g} CC_{3} }}{{\rho_{s} }} - \lambda_{I} } \right)}} dx$$
(B.5)
$$P_{2}^{1} = 1 - \frac{{\lambda_{I}^{L} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\left( { - 1} \right)^{n + 1} e_{1}^{{ - \frac{{n\lambda_{g} C_{3} }}{{\rho_{s} }}}} \mathop \smallint \limits_{0}^{\infty } x^{L - 1} e^{{ - x\left( {\frac{{n\lambda_{g} CC_{3} }}{{P_{s} }} + \lambda_{I } } \right)}} dx$$
(B.6)

Following \(\mathop \smallint \limits_{0}^{\infty } x^{v - 1} e^{ - \mu x} dx = \frac{1}{{\mu^{v} }}\Gamma \left( v \right)\)

$$P_{2}^{1} = 1 - \lambda_{I}^{L} \mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\frac{1}{{\left( {\frac{{n\lambda_{g} CC_{3} }}{{\rho_{s} }} + \lambda_{I} } \right)^{L} }}\left( { - 1} \right)^{n + 1} e_{1}^{{ - \frac{{n\lambda_{g} C_{3} }}{{\rho_{s} }}}}$$
(B.7)
$$P_{2}^{2} = \Pr \left( {\frac{{C_{5} }}{{\rho_{S} }} \left( {CX_{I} + 1} \right) < X < \frac{1}{{\rho_{S} }}\left( {\frac{{C_{4} }}{{X_{2} }} - \rho_{I} X_{I} } \right) } \right),$$
(B.8)
$$P_{2}^{2} = \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{\infty } \left( {F_{X} \left( {\frac{1}{{\rho_{S} }}\left( {\frac{{C_{4} }}{{X_{2} }} - \rho_{I} X_{I} } \right)} \right) - F_{X} \left( {\frac{{C_{5} }}{{\rho_{S} }} \left( {CX_{I} + 1} \right)} \right)} \right) f_{{X_{i} ,X_{2} }} \left( {x,y} \right) dxdy$$
(B.9)

Let \(P_{2}^{2} = Q_{1} - Q_{2}\)

$$Q_{1} = \frac{{\lambda_{I}^{L} \lambda_{2} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{\infty } \left( {1 - e^{{ - \frac{{\lambda_{g} }}{{\rho_{s} }}\left( {\frac{{C_{4} }}{x} - \rho_{I} y} \right)}} } \right)^{M} e^{{ - \lambda_{2} x}} y^{L - 1} e^{{ - \lambda_{I} y}} dxdy$$
(B.10)
$$= 1 - \frac{{\lambda_{I}^{L} \lambda_{2} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\left( { - 1} \right)^{n + 1} \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{\infty } e^{{ - \frac{{n\lambda_{g} }}{{\rho_{s} }}\left( {\frac{{C_{4} }}{x} - \rho_{I} y} \right)}} e^{{ - \lambda_{2} x}} y^{L - 1} e^{{ - \lambda_{I} y}} dxdy$$
(B.11)
$$= 1 - \frac{{\lambda_{I}^{L} \lambda_{2} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\left( { - 1} \right)^{n + 1} \mathop \smallint \limits_{0}^{\infty } \mathop \smallint \limits_{0}^{\infty } e_{1}^{{ - \frac{{n\lambda_{g} C_{4} }}{{\rho_{s} x}} - \lambda_{2} x}} y^{L - 1} e^{{ - y\left( {\lambda_{I} - \frac{{n\lambda_{g} \rho_{I} }}{{\rho_{s} }}} \right)}} dxdy$$
(B.12)

\(\mathop \smallint \limits_{0}^{\infty } e^{{ - \frac{\beta }{4x} - \lambda x}} = \sqrt {\beta /\lambda } K_{1} \sqrt {\beta \lambda }\) is used to solve above equation further,

$$= 1 - \frac{{\lambda_{I}^{L} \lambda_{2} }}{{{\Gamma }\left( {\text{L}} \right)}}\mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\left( { - 1} \right)^{n + 1} \sqrt {\frac{{4nC_{4} \lambda_{g} }}{{\rho_{s} \lambda_{2} }}} K_{1} \sqrt {\frac{{4nC_{4} \lambda_{g} \lambda_{2} }}{{\rho_{s} }}} \mathop \smallint \limits_{0}^{\infty } y^{L - 1} e^{{ - y\left( {\lambda_{I} - \frac{{n\lambda_{g} \rho_{I} }}{{\rho_{s} }}} \right)}} dy$$
(B.13)

From (3.381.4) of (Gradshteyn & Ryzhik, 2014), \(\mathop \smallint \limits_{0}^{\infty } x^{v - 1} e^{ - \mu x} dx = \frac{1}{{\mu^{v} }}\Gamma \left( v \right)\)

$$Q_{1} = 1 - \lambda_{I}^{L} \lambda_{2} \mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\frac{{\left( { - 1} \right)^{n + 1} }}{{\left( {\lambda_{I} - \frac{{n\lambda_{g} \rho_{I} }}{{\rho_{s} }}} \right)^{L} }}\sqrt {\frac{{4nC_{4} \lambda_{g} }}{{\rho_{s} \lambda_{2} }}} K_{1} \sqrt {\frac{{4nC_{4} \lambda_{g} \lambda_{2} }}{{\rho_{s} }}}$$
(B.14)

Following same steps as to evaluate \(P_{2}^{1}\) we can also solve

$$Q_{2} = 1 - \lambda_{I}^{L} \mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\frac{{\left( { - 1} \right)^{n + 1} }}{{\left( {\lambda_{I} + \frac{{n\lambda_{g} CC_{5} }}{{\rho_{s} }}} \right)^{L} }}e_{1}^{{ - \frac{{n\lambda_{g} CC_{5} }}{{\rho_{s} }}}}$$
(B.15)

Putting \(Q_{1 }\) and \(Q_{2}\) to find \(P_{2}^{2} ,\) thus it completes the solution.

$$P_{2}^{2} = \lambda_{I}^{L} \mathop \sum \limits_{n = 1}^{M} \left( {\begin{array}{*{20}c} M \\ n \\ \end{array} } \right)\left( { - 1} \right)^{n + 1} \left( {\frac{1}{{\left( {\lambda_{I} - \frac{{n\lambda_{g} \rho_{I} }}{{\rho_{s} }}} \right)^{L} }}\sqrt {\frac{{4nC_{4} \lambda_{g} }}{{\rho_{s} \lambda_{2} }}} K_{1} \sqrt {\frac{{4nC_{4} \lambda_{g} \lambda_{2} }}{{\rho_{s} }}} - \frac{\Gamma \left( L \right)}{{\left( {nC_{1} + \lambda } \right)^{L} }}e_{1}^{{ - nC_{1} N_{0} }} } \right).$$
(B.16)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaqat, M., Noordin, K.A., Latef, T.A. et al. Performance evaluation of multiple relay SWIPT enabled cooperative NOMA network in the presence of interference. Wireless Netw 30, 2381–2394 (2024). https://doi.org/10.1007/s11276-024-03669-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03669-6

Keywords