Skip to main content
Log in

An improved path loss model for 5G wireless networks in an enclosed hallway

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Given the disparity in signal transmission properties for both current bandwidths and millimeter wave radio frequencies, the present propagation models used for low frequency range up to few gigahertz are not suitable to be utilized for the path loss modelling techniques as well as modulation schemes for the high frequency ranges such as millimeter wave (mmWave) spectra. As a result, rigorous research on link analysis as well as path loss modeling are needed to create a broad and suitable transmission scheme with modeling variables that can handle a broad spectrum of mmWave frequency spectra. This paper proposes an improved path loss model for estimating the path loss in an indoor space wireless communication at 28 GHz and 38 GHz frequencies. The test results for the interior non-line-of-sight (NLOS) situations were collected every two meters over spacing of 24 m separating the transmitting and receiving antenna locations to make a comparison the well-known and improved large-scale generic path loss models. The results of the experimental studies obviously demonstrate that the improved propagation model works significantly better than the CI model, owing to its simple setup, precision, and accurate function. The results show that the presented improved model gives better performance. It is observed that the standard deviation of shadow fading can be significantly reduced in the NLOS scenario, implying greater accuracy in predicting the path loss in an indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Akyildiz, I. F., Han, C., & Nie, S. (2018). Combating the distance problem in the millimeter wave and terahertz frequency bands. IEEE Communications Magazine, 56(6), 102–108. https://doi.org/10.1109/MCOM.2018.1700928

    Article  Google Scholar 

  2. Oladimeji, T., Kumar, P., & Elmezughi, M. K. (2022). Path loss measurements and model analysis in an indoor corridor environment at 28 and 38 GHz. Sensors, 22(19), 1–33. https://doi.org/10.3390/s22197642

    Article  Google Scholar 

  3. Gui, J., Dai, X., & Deng, X. (2020). Stabilizing transmission capacity in millimeter wave links by Q-learning-based scheme. Hindawi Mobile Information Systems, 2020, 1–17. https://doi.org/10.1155/2020/7607316

    Article  Google Scholar 

  4. Ahmed, B. T., Masa Campos, J. L., & Lalueza Mayordomo, J. M. (2012). Propagation path loss and materials insertion loss in indoor environment at WiMAX band of 3.3 to 3.6 GHz. Wireless Personal Communications, 66, 251–260. https://doi.org/10.1007/s11277-011-0335-2

    Article  Google Scholar 

  5. Swain, C. M. K., & Das, S. (2021). proposed prediction framework for improving the accuracy of path loss models of WiMAX network. Wireless Personal Communications, 117, 1079–1101. https://doi.org/10.1007/s11277-020-07912-z

    Article  Google Scholar 

  6. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232. https://doi.org/10.1109/ACCESS.2015.2461602

    Article  Google Scholar 

  7. Oladimeji, T. T., & KumarOyie, P. N. O. (2022). propagation path loss prediction modelling in enclosed environments for 5G networks: A review. Heliyon, 8, 1–16. https://doi.org/10.1016/j.heliyon.2022.e11581

    Article  Google Scholar 

  8. Al-Samman, A. M., Azmi, M. H., Al-Gumaei, Y. A., Al-Hadhrami, T., Rahman, T. A., Fazea, Y., & Al-Mqdashi, A. (2020). Millimetre wave propagation measurements and characteristics for 5G system. Applied Sciences, 10(335), 1–17. https://doi.org/10.3390/app10010335

    Article  Google Scholar 

  9. Al-Gumaei, Y. A., Aslam, N., Al-Samman, A. M., Al-Hadhrami, T., Noordin, K., & Fazea, Y. (2019). Non-cooperative power control game in D2D underlying networks with variant system conditions. Electronics, 8(10), 1–15. https://doi.org/10.3390/electronics8101113

    Article  Google Scholar 

  10. Pi, Z., & Khan, F. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magizne, 49, 101–107. https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  11. Rappaport, T. S., MacCartney, G. R., & SamimiSun, M. K. S. (2015). Wideband millimeter waves propagation measurements and channel models for future wireless communication system design. IEEE Transactions Communications, 63, 3029–3056. https://doi.org/10.1109/TCOMM.2015.2434384

    Article  Google Scholar 

  12. Lin, Z., Du, X., Chen, H., Ai, B., Chen, Z., & Wu, D. (2019). Millimeter wave propagation modelling and measurements for 5G mobile network. IEEE Wireless Communications, 26(1), 72–77. https://doi.org/10.1109/MWC.2019.1800035

    Article  Google Scholar 

  13. Tataria, H., Haneda, K., Molisch, A. F., & ShafiTufvesson, M. F. (2021). Standardization of propagation models: 800 MHz to 100 GHz a historical perspective. International Journal of Wireless Information Networks, 28(1), 1–25. https://doi.org/10.1007/s10776-020-00500-9

    Article  Google Scholar 

  14. 3GPP TR 36.104. (2019). Technical specification of radio access network: Base station radio transmission and reception

  15. Molisch, A. F. (2011). Wireless Communications (2nd ed.). USA: Wiley.

    Google Scholar 

  16. Steele, R. (1992). 1992. Pentech Press.

    Google Scholar 

  17. Shafi, M., Tataria, H., Molisch, A.F., Tufvesson, F., & Tunnicliffe, G. (2020). Real-time deployment aspects of c-band and millimeter-wave 5G-NR systems. ICC 2020–2020 IEEE international conference on communications (ICC), 1–7. Doi: https://doi.org/10.1109/ICC40277.2020.9148902

  18. ITU-R M.1225, (1997) Guidelines for evaluation of radio transmission, ITUR

  19. Stefanovic, M., Panic, S. R., Souza, R. A. A., & Reig, J. (2017). Recent advances in RF propagation modelling for 5G systems. Hindawi International Journal of Antennas and Propagation, 2017, 1–5. https://doi.org/10.1155/2017/4701208

    Article  Google Scholar 

  20. Oyie, N. O., & Afullo, T. J. O. (2018). Measurements and analysis of large scale path loss model at 14 and 22 GHz in indoor corridor. IEEE Access, 6, 17205–17214. https://doi.org/10.1109/ACCESS.2018.2802038

    Article  Google Scholar 

  21. Document RP 151306, 3GPP. (2015). Channel modelling for higher frequency bands

  22. METIS Deliverables D1.2. (2017). Initial channel models based on measurements. Accessed November 5, 2017

  23. Moraitis, N., & Constantinou, P. (2014). indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Transactions on Antennas and Propagation, 52(12), 3180–3189. https://doi.org/10.1109/TAP.2004.836422

    Article  Google Scholar 

  24. Elmezughi, M. K., Salih, O., Afullo, T. J., & Duffy, K. J. (2022). Comparative analysis of major machine-learning based path loss models for enclosed indoor channels. Sensors, 22(13), 1–25. https://doi.org/10.3390/s22134967

    Article  Google Scholar 

  25. Nguyen, C., & Cheema, A. A. (2021). A deep neural network-based multi-frequency path loss prediction model from 0.8 GHz to 70 GHz. Sensors, 21(15), 1–24. https://doi.org/10.3390/s21155100

    Article  Google Scholar 

  26. Faruk, N., Popoola, S. I., Surajudeen-Bakinde, N. T., Oloyede, A. A., Abdulkarim, A., Olawoyin, L. A., Ali, M., Calafate, C. T., & Atayero, A. A. (2019). Path loss predictions in the VHF and UHF bands within urban environments: Experimental investigation of empirical. Heuristics and Geospatial Models IEEE Access, 7, 77293–77307. https://doi.org/10.1109/ACCESS.2019.2921411

    Article  Google Scholar 

  27. Jo, H. S., Park, C., Lee, E., Choi, H. K., & Park, J. (2020). Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network and gaussian process. Sensors, 20(7), 1–23. https://doi.org/10.3390/s20071927

    Article  Google Scholar 

  28. Majed, M. B., Rahman, T. A., Aziz, O. A., Hindia, M. N., & Hanafi, E. (2018). Channel characterization and path loss modeling in indoor environment at 4.5, 28, and 38 GHz for 5G cellular networks. International Journal of Antennas and Propagation, 2018, 1–14. https://doi.org/10.1155/2018/9142367

    Article  Google Scholar 

  29. Al-Saman, A., Cheffena, M., Elijah, O., Al-Gumaei, Y. A., Abdul Rahim, S. K., & Al-Hadhrami, T. (2021). Survey of millimeter-wave propagation measurements and models in indoor environments. Electronics, 10(14), 1–28. https://doi.org/10.3390/electronics10141653

    Article  Google Scholar 

  30. Khatun, M., Guo, C., Moro, L., Matolak, D., & Mehrpouyan, H. (2019). Millimeter-wave path loss at 73 GHz in indoor and outdoor airport environments. 2019 IEEE 90th vehicular technology conference (VTC2019-Fall), 1–5. Doi: https://doi.org/10.1109/VTCFall.2019.8891488

  31. Cheng, C., Kim, S., & Zajić, A. (2017). Comparison of path loss models for indoor 30 GHz, 140 GHz, and 300 GHz channels. 2017 11th European conference on antennas and propagation (EUCAP), 716–720. Doi: https://doi.org/10.23919/EuCAP.2017.7928124

  32. Beauvarlet, D., & Virga, K. L. (2002). Measured characteristics of 30-GHz indoor propagation channels with low-profile directional antennas. IEEE Antennas and Wireless Propagation Letters, 1(1), 87–90. https://doi.org/10.1109/LAWP.2002.802553

    Article  Google Scholar 

  33. Sulyman, A. I., Nassar, A. T., Samimi, M. K., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. Communications Magazine IEEE, 52(9), 78–86. https://doi.org/10.1109/MCOM.2015.7010549

    Article  Google Scholar 

  34. Oladimeji, T. T., Kumar, P., & Elmezughi, M. K. (2023). Performance analysis of improved path loss models for millimeter-wave wireless network channels at 28 GHz and 38 GHz. PLoS ONE, 18, 1–27. https://doi.org/10.1371/journal.pone.0283005

    Article  Google Scholar 

  35. Rappaport, T. S., Xing, Y., Maccartney, G. R., & Molisch, A. F. (2017). Overview of millimeter wave communications for a focus on propagation models. IEEE Transactions on antennas and propagation, 65, 6213–6230.

    Article  Google Scholar 

  36. Talib, M., Aripin, N. B. M., Othman, N. S. & Sallomi, A. H. (2022). Comprehensive overview on millimeter wave communications for 5G networks concentrating on propagation models for different urban environments. 3rd international conference on mathematics and applied science (ICMAS 2022). Doi: https://doi.org/10.1088/1742-6596/2322/1/012095

  37. Maccartney, G. R., Samimi, M. K., & Rappaport, T. S. (2015). Exploiting directionality for millimeter-wave wireless system improvement. 2015 IEEE international conference on communications (ICC), London, pp 2416–2422. Doi: https://doi.org/10.1109/ICC.2015.7248687

  38. HurChoLeeKangParkBenn, S. Y. J. N. J. H. (2014). Synchronous channel sounder using horn antenna and indoor measurements on 28 GHz. IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 2014, 83–87. https://doi.org/10.1109/BlackSeaCom.2014.6849010

    Article  Google Scholar 

  39. Rappaport, T. S., Maccartney, G. R., & SunYanDeng, S. H. S. (2017). Small-Scale, local area, and transitional millimeter wave propagation for 5G communications. IEEE Transactions on Antennas and Propagation, 65, 6474–6490. https://doi.org/10.1109/TAP.2017.2734159

    Article  Google Scholar 

  40. DengMaccartneyRappaport, S. G. R. S. T. S. (2016). Indoor and outdoor 5G diffraction measurements and models at 10, 20, and 26 GHz. IEEE Global Communications Conference (GLOBECOM), 2016, 1–7. https://doi.org/10.1109/GLOCOM.2016.7841898

    Article  Google Scholar 

  41. Sun, S., et al. (2016). Investigation of prediction accuracy, sensitivity, and parameter stability of large scale propagation path loss models for 5G wireless communications. IEEE Transactions Vehicular Technology, 65, 2843–2860.

    Article  Google Scholar 

  42. Samimi, M. K., Rappaport, T. S., & Maccartney, G. R. (2015). Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications. IEEE Wireless Communications Letters, 4, 357–360.

    Article  Google Scholar 

  43. Oladimeji, T., Kumar, P., & Elmezughi, M. (2023). Performance analysis of high order close-in path loss model at 28 and 38 GHz. 2023 conference on information communications technology and society (ICTAS 2023), 1–5. Doi: https://doi.org/10.1109/ICTAS56421.2023.10082746

  44. Huang, J. I. E., Cao, Y., Raimundo, X., & Cheema, A. (2019). Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links. IEEE Access, 7, 156110–156120. https://doi.org/10.1109/ACCESS.2019.2949437

    Article  Google Scholar 

  45. He, R., Gong, Y., Bai, W., Li, Y., & Wang, X. (2020). Random forests based path loss prediction in mobile communication systems. Proceedings of the 2020 IEEE 6th international conference on computer and communications (ICCC), 3029–3056. Doi: https://doi.org/10.1109/ICCC51575.2020.9344905

  46. Faizan, Q. (2020). Enhancing QOS performance of the 5G network by characterizing mm-wave channel and optimizing interference cancellation scheme. A thesis submitted for doctor of philosophy, University of Malaya

  47. Thomas. T.A. et al., (2016). A prediction study of path loss models from 2–73.5 GHz in an urban-macro environment. Proccedings IEEE 83rd VTC Spring, 1–5. Doi: https://doi.org/10.1109/VTCSpring.2016.7504094

  48. Schilcher, U., Toumpis, S., Haenggi, M., Crismani, A., Brandner, G., & Bettstetter, C. (2016). Interference functionals in poisson networks. IEEE Transactions On Information Theory, 62(1), 371–384. https://doi.org/10.1109/TIT.2015.2501799

    Article  MathSciNet  Google Scholar 

  49. Sun, S. et al. (2016). Propagation path loss models for 5G urban micro- and macro-cellular scenarios. Proccedings IEEE 83rd VTC Spring, 1–6. Doi: https://doi.org/10.1109/VTCSpring.2016.7504435

  50. Sun.S., MacCartney Jr. G. R., and Rappaport. T. S. (2016). Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems. Proccedings 10th EuCAP, 1–5. Doi: https://doi.org/10.1109/EuCAP.2016.7481506

  51. Elmezughi M. K., Afullo. T. J., and Oyie N. O, (2020). Investigating the Impact of Antenna Heights on Path Loss Models in an Indoor Corridor Environment. icABCD 2020 Conference IEEE, pp 1–7. Doi: https://doi.org/10.1109/icABCD49160.2020.9183859

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TO; Methodology, TO, PK and ME; Formal Analysis, TO and ME; Measurements, TO; Writing—Original Draft Preparation, TO; Writing, Review and Editing, PK; Supervision, PK; Project Administration, PK. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tolulope T. Oladimeji.

Ethics declarations

Conflict interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oladimeji, T.T., Kumar, P. & Elmezughi, M. An improved path loss model for 5G wireless networks in an enclosed hallway. Wireless Netw 30, 2353–2364 (2024). https://doi.org/10.1007/s11276-024-03675-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03675-8

Keywords

Navigation