Skip to main content
Log in

NLOS error mitigation in TOA systems

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

To address the problem of low indoor positioning accuracy in time-of-arrival systems in the non-line-of-sight (NLOS) environments, we proposed an optimized positioning algorithm based on semidefinite programming (SDP). This algorithm reduces the NLOS error through a novelty method. Compared with the original SDP algorithm, we optimized the algorithm’s objective function by avoiding its dependence on the prior information, thereby decreasing infeasibility problems. The experiment showed that the proposed algorithm’s accuracy is superior to that of the traditional SDP algorithm in the same indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jang, B., Kim, H., & Kim, J. (2022). Survey of landmark-based indoor positioning technologies. Information Fusion, 89, 166–188.

    Article  Google Scholar 

  2. Shang, S., & Wang, L. (2022). Overview of WiFi fingerprinting-based indoor positioning. IET Communications, 16(7), 725–733.

    Article  Google Scholar 

  3. Farahsari, P. S., Farahzadi, A., Rezazadeh, J., & Bagheri, A. (2022). A survey on indoor positioning systems for IoT-based applications. IEEE Internet of Things Journal, 9(10), 7680–7699.

    Article  Google Scholar 

  4. Bencak, P., Hercog, D., & Lerher, T. (2022). Indoor positioning system based on bluetooth low energy technology and a nature-inspired optimization algorithm. Electronics, 11(3), 308.

    Article  Google Scholar 

  5. Wandell, R., Shafaeat, H. M., & Hussain, I. (2023). A cost-effective Wi-Fi-based indoor positioning system for mobile phones. Wireless Networks, 29, 1–18.

    Article  Google Scholar 

  6. Shen, G., Zetik, R., & Thoma, R.S. (2008). Performance comparison of TOA and TDOA based location estimation algorithms in LOS environment. In 2008 5th workshop on positioning, navigation and communication (pp. 71–78). IEEE.

  7. Sakaguchi, K., Hai, Y.-E., & Araki, K. (2005). MIMO channel capacity in an indoor line-of-sight (LOS) environment. IEICE Transactions on Communications, 88(7), 3010–3019.

    Article  Google Scholar 

  8. Djosic, S., Stojanovic, I., Jovanovic, M., & Djordjevic, G. L. (2022). Multi-algorithm UWB-based localization method for mixed LOS/NLOS environments. Computer Communications, 181, 365–373.

    Article  Google Scholar 

  9. Sun, M., Yunjia Wang, L., Huang, S. X., Cao, H., Joseph, W., & Plets, D. (2022). Simultaneous WiFi ranging compensation and localization for indoor NLOS environments. IEEE Communications Letters, 26(9), 2052–2056.

    Article  Google Scholar 

  10. Wang, F., Tang, H., & Chen, J. (2023). Survey on NLOS identification and error mitigation for UWB indoor positioning. Electronics, 12(7), 1678.

    Article  Google Scholar 

  11. Kim, J. (2023). Suppression of NLOS errors in TDOA-AOA hybrid localization. Wireless Networks, 29(2), 657–667.

    Article  Google Scholar 

  12. Tian, X., Wei, G., Song, Y., & Ding, D. (2023). Cooperative localization based on semidefinite relaxation in wireless sensor networks under non-line-of-sight propagation. Wireless Networks, 29(2), 775–785.

    Article  Google Scholar 

  13. Luo, Q., Yang, K., Yan, X., Li, J., Wang, C., & Zhou, Z. (2022). An improved trilateration positioning algorithm with anchor node combination and k-means clustering. Sensors, 22(16), 6085.

    Article  Google Scholar 

  14. Guo, J., & Tao, H. (2021). Cramer-Rao lower bounds of target positioning estimate in netted radar system. Digital Signal Processing, 118, 103222.

    Article  Google Scholar 

  15. Yan, W., Jin, D., Lin, Z., & Yin, F. (2021). Graph neural network for large-scale network localization. In ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5250–5254). IEEE.

  16. Liu, G., Hua, J., Li, Feng, L., Weidang, & Xu, Z. (2020). A quadratic programming localization based on TDOA measurement. In Communications, signal processing, and systems: proceedings of the 2018 CSPS Volume II: signal processing 7th (pp. 1243–1250). Springer.

  17. Zou, Y., & Liu, H. (2020). An efficient NLOS errors mitigation algorithm for TOA-based localization. Sensors, 20(5), 1403.

    Article  Google Scholar 

  18. Katwe, M., Ghare, P., Sharma, P. K., & Kothari, A. (2020). NLOS error mitigation in hybrid RSS-TOA-based localization through semi-definite relaxation. IEEE Communications Letters, 24(12), 2761–2765.

    Article  Google Scholar 

  19. Ding, W., Zhong, Q., Wang, Y., Guan, C., & Fang, B. (2022). Target localization in wireless sensor networks based on received signal strength and convex relaxation. Sensors, 22(3), 733.

    Article  Google Scholar 

  20. Chen, P-C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In WCNC. 1999 IEEE wireless communications and networking conference (Cat. No. 99TH8466) (Vol. 1, pp. 316–320). IEEE.

  21. Li, Y., Gao, Z., Qiaozhuang, X., & Yang, C. (2023). Comprehensive evaluations of NLOS and linearization errors on UWB positioning. Applied Sciences, 13(10), 6187.

    Article  Google Scholar 

  22. Su, Z., Shao, G., & Liu, H. (2016). A soft-minimum method for NLOS error mitigation in TOA systems. In 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–4). IEEE.

  23. Feng, Z., Wang, B., Zhao, Y., Luan, M., & Fengye, H. (2021). Power optimization for target localization with reconfigurable intelligent surfaces. Signal Processing, 189, 108252.

    Article  Google Scholar 

  24. Zhenqiang, S., Shao, G., & Liu, H. (2017). Semidefinite programming for NLOS error mitigation in TDOA localization. IEEE Communications Letters, 22(7), 1430–1433.

    Google Scholar 

  25. Jiang, H., Kathuria, T., Lee, Y.T., Padmanabhan, S., & Song, Z. (2020). A faster interior point method for semidefinite programming. In 2020 IEEE 61st Annual Symposium on foundations of computer science (FOCS) (pp. 910–918). IEEE.

  26. Vaghefi, R. M., Schloemann, J, & Michael Buehrer, R. (2013). Nlos mitigation in toa-based localization using semidefinite programming. In 2013 10th workshop on positioning, navigation and communication (WPNC) (pp. 1–6). IEEE.

  27. Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

    Book  Google Scholar 

  28. Shafira, T., Chaerani, D., & Lesmana, E. (2020). Robust optimization model for truss topology design problem using convex programming CVX. World Scientific News, 148, 27–45.

    Google Scholar 

Download references

Funding

The project is supported in part by the National Natural Science Foundation under grant (\(\mathrm {No.}\) 62371248). It is also supported by the foundation of reform project of graduate teaching in Nanjing University of Posts and Telecommunications (\(\mathrm {No.}\) JGKT22_XYB03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, W., Wu, H. et al. NLOS error mitigation in TOA systems. Wireless Netw 30, 2863–2872 (2024). https://doi.org/10.1007/s11276-024-03702-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03702-8

Keywords

Navigation