Skip to main content

Advertisement

Log in

A multi-criteria aware integrated decision making routing protocol for IoT communication toward 6G networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Energy resource limitations, data packet traffic congestion, mobility, and communication link failure of relay nodes are vital challenges in establishing a reliable and efficient path between end-to-end users in IoT Communication toward 6G. These factors can severely affect routing and network performance. Hence, it is imperative to design a routing approach to adapt to such heterogeneity to improve the quality of service (QoS) performance toward 6G networks. This paper proposes a multi-criteria-aware integrated decision-making (MCAIDeM) routing protocol in which relay nodes’ residual energy, queue length, mobility, and link quality are integrated into a single routing approach for efficient and reliable route selection. In particular, the MCAIDeM routing protocol utilizes an analytic hierarchy process (AHP) approach for multi-criteria decision-making, which determines appropriate weights according to the parameter values of the nodes to select suitable relay nodes during the route selection process. Extensive simulations are performed to evaluate the performance, and the obtained simulation results showed that the proposed MCAIDeM routing protocol outperforms conventional routing protocols in terms of network throughput, latency, and energy consumption with various network parameters. The end-to-end delay obtained by MCAIDeM was 9.03% and 11.26% lower than that of MBMQA, 11.21%, and 13.67% lower than that of MEQSA-OLSRv2, and 19.15% and 16.61% lower than that of the MP-OLSRv2 routing protocols when the node speed increased from 5 m/s to 30 m/s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, F., Deng, R., Zhou, X., & Shan, L. (2022). Utility optimization for multi-user task offloading in mobile ad hoc cloud: A stochastic game approach. IEEE Transactions on Vehicular Technology, 71(6), 6596–6608.

    Article  Google Scholar 

  2. Feng, G., Li, X., Gao, Z., Wang, C., Lv, H., & Zhao, Q. (2021). Multi-path and multi-hop task offloading in mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 70(6), 5347–5361.

    Article  Google Scholar 

  3. Mohjazi, L., Selim, B., Tatipamula, M., & Imran, M. A. (2024). The journey toward 6G: A digital and societal revolution in the making. IEEE Internet of Things Magazine, 7(2), 119–128.

    Article  Google Scholar 

  4. Kaur, G., Chanak, P., & Bhattacharya, M. (2021). Energy-efficient intelligent routing scheme for IoT-enabled WSNs. IEEE Internet of Things Journal, 8(14), 11440–11449.

    Article  Google Scholar 

  5. Agiollo, A., Conti, M., Kaliyar, P., Lin, T.-N., & Pajola, L. (2021). DETONAR: Detection of routing attacks in RPL-based IoT. IEEE Transactions on Network and Service Management, 18(2), 1178–1190.

    Article  Google Scholar 

  6. Xue, Q., et al. (2024). A survey of beam management for mmWave and THz communications towards 6G. IEEE Communications Surveys & Tutorial. https://doi.org/10.1109/COMST.2024.3361991

    Article  Google Scholar 

  7. Long, N. B., Tran-Dang, H., & Kim, D.-S. (2018). Energy-aware real-time routing for large-scale industrial internet of things. IEEE Internet of Things Journal, 5(3), 2190–2199.

    Article  Google Scholar 

  8. Haghighi, M. S., & Aziminejad, Z. (2019). Highly anonymous mobility-tolerant location-based onion routing for VANETs. IEEE Internet of Things Journal, 7(4), 2582–2590.

    Article  Google Scholar 

  9. Menelaou, C., Timotheou, S., Kolios, P., Panayiotou, C. G., & Polycarpou, M. M. (2018). Minimizing traffic congestion through continuous-time route reservations with travel time predictions. IEEE Transactions on Intelligent Vehicles, 4(1), 141–153.

    Article  Google Scholar 

  10. Qureshi, K. N., Din, S., Jeon, G., & Piccialli, F. (2020). Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Computer Communications, 149, 382–392.

    Article  Google Scholar 

  11. Tilwari, V., Dimyati, K., Hindia, M. H. D. N., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences, 9(8), 1582.

    Article  Google Scholar 

  12. Tilwari, V., et al. (2020). MCLMR: A multicriteria based multipath routing in the mobile ad hoc networks. Wireless Personal Communications, 112, 2461–2483.

    Article  Google Scholar 

  13. Malathy, S., et al. (2020). An optimal network coding based backpressure routing approach for massive IoT network. Wireless Networks, 26, 3657–3674.

    Article  Google Scholar 

  14. Tilwari, V., Dimyati, K., Hindia, M. N., Mohmed Noor Izam, T. F. B. T., & Amiri, I. S. (2020). EMBLR: A high-performance optimal routing approach for D2D communications in large-scale IoT 5G network. Symmetry, 12(3), 438.

    Article  Google Scholar 

  15. Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology, 10(7), 1376–1384.

    Article  Google Scholar 

  16. Periyasamy, K., et al. (2023). A novel method for analyzing the performance of free space optical communication in WDM using EDFA. Wireless Personal Communications, 131(1), 679–707.

    Article  Google Scholar 

  17. Thirumoorthy, P., Bhuvaneshwari, K. S., Kamalanathan, C., Sunita, P., Prabhu, E., & Maheswaran, S. (2022). Improved key agreement based kerberos protocol for M-health security. Computer Systems Science & Engineering, 42(2), 2022.

    Article  Google Scholar 

  18. Mylsamy, R., & Jayaprakash, K. (2023). Z number improved reference ideal method-based decision-making process for enforcing cooperation during data dissemination in mobile ad hoc networks. International Journal of Communication Systems, 36(13), e5522.

    Article  Google Scholar 

  19. Amiri, I. S., et al. (2020). DABPR: A large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks, 26, 2353–2374.

    Article  Google Scholar 

  20. Maheswar, R., et al. (2021). CBPR: A cluster-based backpressure routing for the internet of things. Wireless Personal Communications, 118, 3167–3185.

    Article  Google Scholar 

  21. Malathy, S., et al. (2021). Routing constraints in the device-to-device communication for beyond IoT 5G networks: A review. Wireless Networks, 27(5), 3207–3231.

    Article  Google Scholar 

  22. Tilwari, V., Song, T., & Pack, S. (2022). An improved routing approach for enhancing QoS performance for D2D communication in B5G networks. Electronics, 11(24), 4118.

    Article  Google Scholar 

  23. Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad hoc networks, 9(1), 28–47.

    Article  Google Scholar 

  24. Yi, J., & Parrein, B. (2017). Multipath extension for the optimized link state routing protocol version 2 (OLSRv2) (No. rfc8218).

  25. Bhattacharya, A., & Sinha, K. (2017). An efficient protocol for load-balanced multipath routing in mobile ad hoc networks. Ad Hoc Networks, 63, 104–114.

    Article  Google Scholar 

  26. Qureshi, K. N., Bashir, M. U., Lloret, J., & Leon, A. (2020). Optimized cluster-based dynamic energy-aware routing protocol for wireless sensor networks in agriculture precision. Journal of sensors, 2020, 1–19.

    Article  Google Scholar 

  27. Cheng, J., Yang, P., Navaie, K., Ni, Q., & Yang, H. (2021). A low-latency interference coordinated routing for wireless multi-hop networks. IEEE Sensors Journal, 21(6), 8679–8690.

    Article  Google Scholar 

  28. Hai, L., Gao, Q., Wang, J., Zhuang, H., & Wang, P. (2017). Delay-optimal back-pressure routing algorithm for multihop wireless networks. IEEE Transactions on Vehicular Technology, 67(3), 2617–2630.

    Article  Google Scholar 

  29. Naeem, A., Javed, A. R., Rizwan, M., Abbas, S., Lin, J.C.-W., & Gadekallu, T. R. (2021). DARE-SEP: A hybrid approach of distance aware residual energy-efficient SEP for WSN. IEEE transactions on green communications and networking, 5(2), 611–621.

    Article  Google Scholar 

  30. Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: a multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572.

    Article  Google Scholar 

  31. Tilwari, V., et al. (2021). MBMQA: A multicriteria-aware routing approach for the IoT 5G network based on D2D communication. Electronics, 10(23), 2937.

    Article  Google Scholar 

  32. Agarwal, V., DeCarlo, R. A., & Tsoukalas, L. H. (2017). Modeling energy consumption and lifetime of a wireless sensor node operating on a contention-based MAC protocol. IEEE Sensors Journal, 17(16), 5153–5168. https://doi.org/10.1109/JSEN.2017.2722462

    Article  Google Scholar 

  33. Lajara, R. J., Perez-Solano, J. J., & Pelegrí-Sebastia, J. (2015). A method for modeling the battery state of charge in wireless sensor networks. IEEE Sensors Journal, 15(2), 1186–1197. https://doi.org/10.1109/JSEN.2014.2361151

    Article  Google Scholar 

  34. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the Levy-walk nature of human mobility. IEEE/ACM Transactions on Networking, 19(3), 630–643. https://doi.org/10.1109/TNET.2011.2120618

    Article  Google Scholar 

  35. Yang, S., Adeel, U., Tahir, Y., & McCann, J. A. (2017). Practical opportunistic data collection in wireless sensor networks with mobile sinks. IEEE Transactions on Mobile Computing, 16(5), 1420–1433. https://doi.org/10.1109/TMC.2016.2595574

    Article  Google Scholar 

  36. Preeth, S. K. S. L., Dhanalakshmi, R., Kumar, R., & Si, S. (2019). Efficient parent selection for RPL using ACO and coverage based dynamic trickle techniques. Journal of Ambient Intelligence and Humanized Computing, 11, 4377–4391.

    Article  Google Scholar 

  37. Wang, N., Zhao, H., & Hai, L. (2019). Differential back-pressure routing for single-queue time-varying wireless networks. IET Communications, 13(18), 3117–3123. https://doi.org/10.1049/iet-com.2019.0371

    Article  Google Scholar 

  38. Hai, L., Wang, J., Wang, P., Wang, H., & Yang, T. (2016). High-throughput network coding aware routing in time-varying multihop networks. IEEE transactions on vehicular technology, 66(7), 6299–6309.

    Article  Google Scholar 

  39. Kim, B.-S., Ullah, S., Kim, K. H., Roh, B., Ham, J.-H., & Kim, K.-I. (2020). An enhanced geographical routing protocol based on multi-criteria decision making method in mobile ad-hoc networks. Ad Hoc Networks, 103, 102157.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2023-2021-0-01810) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangheon Pack.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilwari, V., Song, T., Nandini, U. et al. A multi-criteria aware integrated decision making routing protocol for IoT communication toward 6G networks. Wireless Netw 30, 3321–3335 (2024). https://doi.org/10.1007/s11276-024-03739-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03739-9

Keywords