Skip to main content

Advertisement

Log in

Automated micro aneurysm classification using deep convolutional spike neural networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

One of the common diseases in people with micro aneurysms is diabetic retinopathy (DR). Due to a lack of early diagnosis, diabetic retinopathy poses a risk to vision because it develops without any warning symptoms. Therefore, the deep learning methods on color fundus images demonstrate the recognition task of diabetic retinopathy levels. In this manuscript, an automated Micro aneurysm detection and classification utilizing deep convolution spike neural network (DCSNN-AMA) is proposed for diabetic retinopathy. Here, the images are filtered using Savitzky-Golay (SG) pre-processing method. After preprocessing, the images are segmented under Tsalli's Entropy based multilevel 3D Otsu (TE-3D-Otsu) thresholding technique. The images are extracted under Gray level co-occurrence matrix (GLCM) window adaptive algorithm operation. After that, the Deep Convolutional Spiking Neural Network (DCSNN) method is employed for classification. The proposed method has attained 32.5, 19 and 24.4% higher accuracy, 23, 31.6 and 24.4% higher F-measure, and 19.35, 8 and 16.12% lower computation time analyzed to the existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Glovaci, D., Fan, W., & Wong, N. D. (2019). Epidemiology of diabetes mellitus and cardiovascular disease. Current cardiology reports, 21(4), 1–8.

    Article  Google Scholar 

  2. Zhang, B., Liu, L., Guo, L., Guo, S., Zhao, X., Liu, G., & Yang, J. (2021). Telomere length mediates the association between polycyclic aromatic hydrocarbons exposure and abnormal glucose level among Chinese coke oven plant workers. Chemosphere, 266, 129111.

    Article  MATH  Google Scholar 

  3. Sivapriya, G., Devi, R. M., Keerthika, P., & Praveen, V. (2024). Automated diagnostic classification of diabetic retinopathy with microvascular structure of fundus images using deep learning method. Biomedical Signal Processing and Control, 88, 105616.

    Article  Google Scholar 

  4. Gadekallu, T. R., Khare, N., Bhattacharya, S., Singh, S., Maddikunta, P. K. R., & Srivastava, G. (2020). Deep neural networks to predict diabetic retinopathy. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01963-7

    Article  Google Scholar 

  5. Mesquida, M., Drawnel, F., & Fauser, S. (2019). The role of inflammation in diabetic eye disease. Seminars in Immunopathology, 41(4), 427–445.

    Article  Google Scholar 

  6. Jain, P., & Gupta, S. (2023). Evolutionary gravitational neocognitron neural network based blood flow velocity prediction using multi-exposure laser speckle contrast imaging. International Journal of Pattern Recognition and Artificial Intelligence. https://doi.org/10.1142/S0218001423560232

    Article  MATH  Google Scholar 

  7. Nagarani, N., Karthick, R., Sophia, M. S. C., & Binda, M. B. (2024). Self-attention based progressive generative adversarial network optimized with momentum search optimization algorithm for classification of brain tumor on MRI image. Biomedical Signal Processing and Control, 88, 105597.

    Article  Google Scholar 

  8. Reka, R., Karthick, R., Ram, R. S., & Singh, G. (2024). Multi head self-attention gated graph convolutional network based multi attack intrusion detection in MANET. Computers & Security, 136, 103526.

    Article  Google Scholar 

  9. Meenalochini, P., Karthick, R., & Sakthivel, E. (2023). An Efficient control strategy for an extended switched coupled inductor Quasi-Z-Source inverter for 3 Φ Grid connected system. Journal of Circuits, Systems and Computers, 32(11), 2450011.

    MATH  Google Scholar 

  10. Karthick, R., Senthilselvi, A., Meenalochini, P., & Senthil Pandi, S. (2023). An optimal partitioning and floor planning for VLSI circuit design based on a hybrid bio-inspired whale optimization and adaptive bird swarm optimization (WO-ABSO) algorithm. Journal of Circuits, Systems and Computers, 32(08), 2350273.

    Article  Google Scholar 

  11. Chandran, J. G. J., Karthick, R., Rajagopal, R., & Meenalochini, P. (2023). Dual-channel capsule generative adversarial network optimized with golden eagle optimization for pediatric bone age assessment from hand X-ray image. International Journal of Pattern Recognition and Artificial Intelligence, 37(02), 2354001.

    Article  Google Scholar 

  12. Rajagopal, R. K. P. M. T. K. R., Karthick, R., Meenalochini, P., & Kalaichelvi, T. (2023). Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomedical Signal Processing and Control, 79, 104197.

    Article  Google Scholar 

  13. Karthick, R., & Meenalochini, P. (2020). Implementation of data cache block (DCB) in shared processor using fi eld-programmable gate array (FPGA).

  14. Karthick, R., Senthilselvi, A., Meenalochini, P., & Senthil Pandi, S. (2022). Design and analysis of linear phase finite impulse response filter using water strider optimization algorithm in FPGA. Circuits, Systems, and Signal Processing, 41(9), 5254–5282.

    Article  MATH  Google Scholar 

  15. https://www.adcis.net/en/third-party/e-ophtha/

  16. Jardim, R., & Morgado-Dias, F. (2020). Savitzky-Golay filtering as image noise reduction with sharp color reset. Microprocessors and Microsystems, 74, 103006.

    Article  MATH  Google Scholar 

  17. Jena, B., Naik, M. K., Panda, R., & Abraham, A. (2021). Maximum 3D Tsallis entropy based multilevel thresholding of brain MR image using attacking Manta Ray foraging optimization. Engineering Applications of Artificial Intelligence, 103, 104293.

    Article  Google Scholar 

  18. Chen, H., Li, W., & Zhu, Y. (2021). Improved window adaptive gray level co-occurrence matrix for extraction and analysis of texture characteristics of pulmonary nodules. Computer Methods and Programs in Biomedicine, 208, 106263.

    Article  Google Scholar 

  19. Turkson, R. E., Qu, H., Mawuli, C. B., & Eghan, M. J. (2021). Classification of alzheimer’s disease using deep convolutional spiking neural network. Neural Processing Letters, 53(4), 2649–2663.

    Article  Google Scholar 

  20. Mazlan, N., Yazid, H., Arof, H., & Mohd Isa, H. (2020). Automated microaneurysms detection and classification using multilevel thresholding and multilayer perceptron. Journal of Medical and Biological Engineering, 40(2), 292–306.

    Article  Google Scholar 

  21. Usman, I., & Almejalli, K. A. (2020). Intelligent automated detection of microaneurysms in fundus images using feature-set tuning. IEEE Access, 8, 65187–65196.

    Article  Google Scholar 

  22. Shankar, K., Sait, A. R. W., Gupta, D., Lakshmanaprabu, S. K., Khanna, A., & Pandey, H. M. (2020). Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model. Pattern Recognition Letters, 133, 210–216.

    Article  Google Scholar 

  23. Alaguselvi, R., & Murugan, K. (2021). Performance analysis of automated lesion detection of diabetic retinopathy using morphological operation. Signal, Image and Video Processing, 15(4), 797–805.

    Article  MATH  Google Scholar 

  24. Murugan, R., & Roy, P. (2022). MicroNet: Microaneurysm detection in retinal fundus images using convolutional neural network. Soft Computing, 26(3), 1057–1066.

    Article  MATH  Google Scholar 

  25. Das, S., & Saha, S. K. (2022). Diabetic retinopathy detection and classification using CNN tuned by genetic algorithm. Multimedia Tools and Applications, 81(6), 8007–8020.

    Article  MATH  Google Scholar 

  26. Avinash, A., Biju, P., Premanath, P., Thomas, A., & Gopi, V. P. (2022). An improved method for automated detection of microaneurysm in retinal fundus images. In R. Sridhar, G. R. Gangadharan, M. Sheng, & R. Shankaran (Eds.), Edge of things in personalized healthcare support systems (pp. 173–186). London: Academic Press.

    MATH  Google Scholar 

  27. Sahoo, M., Ghorai, S., Mitra, M., & Pal, S. (2023). Improved detection accuracy of red lesions in retinal fundus images with superlearning approach. Photodiagnosis and Photodynamic Therapy, 42, 103351.

    Article  MATH  Google Scholar 

  28. Liao, Y., Xia, H., Song, S., & Li, H. (2021). Microaneurysm detection in fundus images based on a novel end-to-end convolutional neural network. Biocybernetics and Biomedical Engineering, 41(2), 589–604.

    Article  MATH  Google Scholar 

  29. Birlin, T. M., Divya, C., & Livingston, J. J. (2023). Automatic detection of microaneurysms using a novel segmentation algorithm based on deep learning techniques. Computational Intelligence. https://doi.org/10.1111/coin.12588

    Article  MATH  Google Scholar 

  30. Pavani, P. G., Biswal, B., & Gandhi, T. K. (2023). Simultaneous multiclass retinal lesion segmentation using fully automated RILBP-YNet in diabetic retinopathy. Biomedical Signal Processing and Control, 86, 105205.

    Article  Google Scholar 

  31. Balaji, G. N., Mary, S. A. S. A., Mantravadi, N., & Shajin, F. H. (2023). Graph CNN-ResNet-CSOA transfer learning architype for an enhanced skin cancer detection and classification scheme in medical image processing. International Journal on Artificial Intelligence Tools. https://doi.org/10.1142/S021821302350063X

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Vidhyalakshmi M.K: Conceptualization, Methodology, Writing- Original draft preparation. Dr. Thaiyalnayaki S: Supervision. Dr. Bhuvana Suganthi D: Supervision. Dr. Porselvi R: Supervision. Mrs. Kumuthapriya K: Supervision.

Corresponding author

Correspondence to M. K. Vidhyalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhyalakshmi, M.K., Thaiyalnayaki, S., Suganthi, D.B. et al. Automated micro aneurysm classification using deep convolutional spike neural networks. Wireless Netw 31, 505–515 (2025). https://doi.org/10.1007/s11276-024-03769-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03769-3

Keywords