Skip to main content

Advertisement

Log in

Soca: secure offloading considering computational acceleration for multi-access edge computing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Due to the complexity and security requirements of edge computing environments and the limited resources of terminals, secure offloading in multi-access edge computing (MEC) networks has emerged as a critical and urgent research area. However, many studies on task offloading often ignore the necessary balance between security requirements and efficiency. To address this issue, we propose a Secure Offloading Strategy Considering Computational Acceleration, named SOCA, designed to bolster security while preserving offloading efficiency. Specifically, the secure offloading problem is modeled as a multi-objective optimization problem by achieving a composite function of latency mitigation and security metrics as the optimization objective, which is solved by the ChaCha20-based offloading decision algorithm (ChaCha20-ODA). The algorithm employs the ChaCha20 encryption protocol as its security mechanism. By executing a quarter-round function to generate a keystream, it provides robust protection for data tasks, ensuring that the data remains impervious to malevolent interception by adversaries throughout the transmission process. Furthermore, to improve the computational efficiency of task offloading, the algorithm simultaneously leverages both edge and local computing resources, achieving computational acceleration by optimizing the appropriate offload ratio. The experimental results illustrate that as compared with baselines, our approach achieves remarkable improvement in the balance between latency and safety benchmarks, which demonstrates the superiority of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sun, X., Yu, F. R., & Zhang, P. (2021). A survey on cyber-security of connected and autonomous vehicles (cavs). IEEE Transactions on Intelligent Transportation Systems, 23(7), 6240–6259.

    Article  MATH  Google Scholar 

  2. Gao, H., Liu, C., Li, Y., & Yang, X. (2021). V2vr: Reliable hybrid-network-oriented v2v data transmission and routing considering rsus and connectivity probability. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3533–3546. https://doi.org/10.1109/TITS.2020.2983835

    Article  MATH  Google Scholar 

  3. Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (uavs): A comprehensive review. Drones, 6(6), 147.

    Article  MATH  Google Scholar 

  4. Liu, R., Xie, M., Liu, A., & Song, H. (2024). Joint optimization risk factor and energy consumption in iot networks with tinyml-enabled internet of uavs. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2023.3348837

    Article  MATH  Google Scholar 

  5. Chen, M., Liu, A., Xiong, N. N., Song, H., & Leung, V. C. M. (2023). Sgpl: An intelligent game-based secure collaborative communication scheme for metaverse over 5g and beyond networks. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2023.3345403

    Article  Google Scholar 

  6. Gao, H., Huang, W., & Duan, Y. (2021). The cloud-edge-based dynamic reconfiguration to service workflow for mobile ecommerce environments: a qos prediction perspective. ACM Transactions on Internet Technology (TOIT), 21(1), 1–23.

    Article  MATH  Google Scholar 

  7. Cruz, P., Achir, N., & Viana, A. C. (2022). On the edge of the deployment: A survey on multi-access edge computing. ACM Computing Surveys, 55(5), 1–34.

    Article  MATH  Google Scholar 

  8. Mao, S., Liu, L., Zhang, N., Dong, M., Zhao, J., Wu, J., & Leung, V. C. (2022). Reconfigurable intelligent surface-assisted secure mobile edge computing networks. IEEE Transactions on Vehicular Technology, 71(6), 6647–6660.

    Article  Google Scholar 

  9. He, D., Wang, W., Xu, Y., Huang, X., Cheng, H., Duan, X., Huang, Y., Hong, H., Zhang, Y., & Zhang, W. (2020). Overview of physical layer enhancement for 5g broadcast in release 16. IEEE Transactions on Broadcasting, 66(2), 471–480. https://doi.org/10.1109/TBC.2020.2981775

    Article  MATH  Google Scholar 

  10. Zhou, Y., Yeoh, P. L., Pan, C., Wang, K., Elkashlan, M., Wang, Z., Vucetic, B., & Li, Y. (2019). Offloading optimization for low-latency secure mobile edge computing systems. IEEE Wireless Communications Letters, 9(4), 480–484.

    Article  Google Scholar 

  11. Jiang, H., Dai, X., Xiao, Z., & Iyengar, A. K. (2022). Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2022.3150432

    Article  MATH  Google Scholar 

  12. Xiao, H., Pei, Q., Song, X., & Shi, W. (2021). Authentication security level and resource optimization of computation offloading in edge computing systems. IEEE Internet of Things Journal, 9(15), 13010–13023.

    Article  MATH  Google Scholar 

  13. Chen, M., & Hao, Y. (2018). Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3), 587–597.

    Article  MATH  Google Scholar 

  14. Chen, L., Wu, J., Zhang, J., Dai, H.-N., Long, X., & Yao, M. (2020). Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation. IEEE Transactions on Cloud Computing, 10(4), 2451–2468.

    Article  MATH  Google Scholar 

  15. Meng, X., Wang, W., Wang, Y., Lau, V. K., & Zhang, Z. (2019). Closed-form delay-optimal computation offloading in mobile edge computing systems. IEEE Transactions on Wireless Communications, 18(10), 4653–4667.

    Article  MATH  Google Scholar 

  16. Wang, J., Hu, J., Min, G., Zhan, W., Ni, Q., & Georgalas, N. (2019). Computation offloading in multi-access edge computing using a deep sequential model based on reinforcement learning. IEEE Communications Magazine, 57(5), 64–69.

    Article  Google Scholar 

  17. Wei, H., Luo, H., Sun, Y., & Obaidat, M. S. (2019). Cache-aware computation offloading in iot systems. IEEE Systems Journal, 14(1), 61–72.

    Article  MATH  Google Scholar 

  18. Kuang, Z., Li, L., Gao, J., Zhao, L., & Liu, A. (2019). Partial offloading scheduling and power allocation for mobile edge computing systems. IEEE Internet of Things Journal, 6(4), 6774–6785.

    Article  MATH  Google Scholar 

  19. Guo, F., Zhang, H., Ji, H., Li, X., & Leung, V. C. (2018). An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Transactions on Networking, 26(6), 2651–2664.

    Article  MATH  Google Scholar 

  20. Li, P., Xiao, Z., Wang, X., Huang, K., Huang, Y., & Gao, H. (2023). Eptask: Deep reinforcement learning based energy-efficient and priority-aware task scheduling for dynamic vehicular edge computing. IEEE Transactions on Intelligent Vehicles. https://doi.org/10.1109/TIV.2023.3321679

    Article  MATH  Google Scholar 

  21. Pan, Y., Pan, C., Wang, K., Zhu, H., & Wang, J. (2021). Cost minimization for cooperative computation framework in mec networks. IEEE Transactions on Wireless Communications, 20(6), 3670–3684.

    Article  MATH  Google Scholar 

  22. Liu, Y., Li, Y., Niu, Y., & Jin, D. (2019). Joint optimization of path planning and resource allocation in mobile edge computing. IEEE Transactions on Mobile Computing, 19(9), 2129–2144.

    Article  MATH  Google Scholar 

  23. Kuang, L., Gong, T., OuYang, S., Gao, H., & Deng, S. (2020). Offloading decision methods for multiple users with structured tasks in edge computing for smart cities. Future Generation Computer Systems, 105, 717–729.

    Article  Google Scholar 

  24. Roman, R., Rios, R., Onieva, J. A., & Lopez, J. (2018). Immune system for the internet of things using edge technologies. IEEE Internet of Things Journal, 6(3), 4774–4781.

    Article  MATH  Google Scholar 

  25. Haddadi, H., Christophides, V., Teixeira, R., Cho, K., Suzuki, S., & Perrig, A. (2018). Siotome: An edge-isp collaborative architecture for iot security. Proc. IoTSec, 1–4.

  26. Ju, Y., Cao, Z., Chen, Y., Liu, L., Pei, Q., Mumtaz, S., Dong, M., & Guizani, M. (2023). Noma-assisted secure offloading for vehicular edge computing networks with asynchronous deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2023.3320861

    Article  Google Scholar 

  27. Li, H., Xu, H., Zhou, C., Lü, X., & Han, Z. (2020). Joint optimization strategy of computation offloading and resource allocation in multi-access edge computing environment. IEEE Transactions on Vehicular Technology, 69(9), 10214–10226. https://doi.org/10.1109/TVT.2020.3003898

    Article  Google Scholar 

  28. Gu, X., Zhang, G., Wang, M., Duan, W., Wen, M., & Ho, P.-H. (2021). Uav-aided energy-efficient edge computing networks: Security offloading optimization. IEEE Internet of Things Journal, 9(6), 4245–4258.

    Article  MATH  Google Scholar 

  29. Mao, B., Kawamoto, Y., & Kato, N. (2020). Ai-based joint optimization of qos and security for 6g energy harvesting internet of things. IEEE Internet of Things Journal, 7(8), 7032–7042.

    Article  MATH  Google Scholar 

Download references

Funding

This work was supported in part by the Consulting Project of Chinese Academy of Engineering under Grant 2023-XY-09, the National Natural Science Foundation of China under Grant 62272100, and in part by the Academy-Locality Cooperation Project of Chinese Academy of Engineering under Grant JS2021ZT05.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Meng Yi wrote the main manuscript text. Peng Yang performed the methodology, funding acquisition and project administration.Jinhu Xie provided material preparation, data collection and analysis. Cheng Fang carried out experimental verification. Bing Li prepared the figures and provided valuable comments on previous versions of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Peng Yang.

Ethics declarations

Conflict of interest

All authors declare that there is no potential conflict (financial or nonfinancial) of interests regarding the publication of this article.

Ethical approval

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Yang, P., Xie, J. et al. Soca: secure offloading considering computational acceleration for multi-access edge computing. Wireless Netw 31, 1021–1035 (2025). https://doi.org/10.1007/s11276-024-03813-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03813-2

Keywords

Profiles

  1. Bing Li