Skip to main content
Log in

Routing attacks detection in MANET using trust management enabled hybrid machine learning

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The ever-changing topology in mobile ad hoc networks (MANETs) makes routing a formidable obstacle. The infrastructure-independent capabilities of MANET ensure the temporary communications linkages, but the lack of a good centralized monitoring method makes routing in MANETs a severe trust and safety concern. As a result, this study presents a new energy-and trust-aware protocol for routing that depends on the suggested as well as enabled by Deep Reinforcements Learning. The best route choice is being carried out by the suggested Dolphin Cat Optimizer according to the modelled objective function that takes into account trust criteria, including current trust, historic trust, both direct and indirect trust, delay, distance, and connection lifespan. Combining the advantages of both the Dolphins Echolocation as well as the Cat Swarm Optimization algorithms, the Dolphin Cat Optimizer is able to achieve quicker worldwide cooperation. The suggested protocol for routing achieved 0.6531, 0.0107, 0.3267, as well as 0.9898 in absence of network assaults, as well as 0.7693, 0.0112, 0.3605, as well as 0.9961 in the event of network attacks, according to the modeling involving 75 nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Sun, D., Zhang, L., Jin, K., Ling, J., & Zheng, X. (2023). An intrusion detection method based on hybrid machine learning and neural network in the industrial control field. Applied Sciences, 13, 10455.

    Article  MATH  Google Scholar 

  2. Karim, A., Shahroz, M., Mustofa, K., Belhaouari, S. B., & Joga, S. R. (2023). Phishing detection system through hybrid machine learning based on URL. IEEE Access, 11, 36805–36822.

    Article  Google Scholar 

  3. Shibl, M. M., Ismail, L. S., & Massoud, A. M. (2023). An intelligent two-stage energy dispatch management system for hybrid power plants: Impact of machine learning deployment. IEEE Access, 11, 13091–13102.

    Article  MATH  Google Scholar 

  4. Kumar, D., Chauhan, Y. K., Pandey, A. S., Srivastava, A. K., Kumar, V., Alsaif, F., Elavarasan, R. M., Islam, M. R., Kannadasan, R., & Alsharif, M. H. (2023). A novel hybrid MPPT approach for solar PV systems using particle-swarm-optimization-trained machine learning and flying squirrel search optimization. Sustainability, 15, 5575.

    Article  Google Scholar 

  5. Srivastava, A. K., Pandey, A. S., Abou Houran, M., Kumar, V., Kumar, D., Tripathi, S. M., Gangatharan, S., & Elavarasan, R. M. (2023). A day-ahead short-term load forecasting using M5P machine learning algorithm along with elitist genetic algorithm (EGA) and random forest-based hybrid feature selection. Energies, 16, 867.

    Article  Google Scholar 

  6. Meenakshi, K., Revathi, M., Harsha, S. S., Tamilarasi, K., Shanthi, T. S., Sugumar, D., & Rajaram, A. (2024). Hybrid machine learning approach for trust evaluation to secure MANET from routing attacks. Journal of Intelligent & Fuzzy Systems, 46, 1–17.

    Article  Google Scholar 

  7. Sugumaran, V. R., & Rajaram, A. (2023). Lightweight blockchain-assisted intrusion detection system in energy efficient MANETs. Journal of Intelligent & Fuzzy Systems, 45, 1–16.

    Article  MATH  Google Scholar 

  8. Cha, G., Hong, W., & Kim, Y. (2023). Performance improvement of machine learning model using autoencoder to predict demolition waste generation rate. Sustainability, 15, 3691.

    Article  MATH  Google Scholar 

  9. Rahman, M., Chowdhury, S., Shorfuzzaman, M., Hossain, M. K., & Hammoudeh, M. (2023). Peer-to-peer power energy trading in blockchain using efficient machine learning model. Sustainability, 15, 13640.

    Article  Google Scholar 

  10. Ahmim, A., Maazouzi, F., Ahmim, M., Namane, S., & Dhaou, I. B. (2023). Distributed denial of service attack detection for the internet of things using hybrid deep learning model. IEEE Access, 11, 119862–119875.

    Article  MATH  Google Scholar 

  11. Kumer, S. V., Gogu, L. B., Ellappan, M., Maloji, S., Natarajan, B., Sambasivam, G., & Tyagi, V. B. (2023). Track and noise separation based on the universal codebook and enhanced speech recognition using hybrid deep learning method. IEEE Access, 11, 120707–120720.

    Article  Google Scholar 

  12. Martinho, A. D., Hippert, H. S., & Goliatt, L. (2023). Short-term streamflow modeling using data-intelligence evolutionary machine learning models. Scientific Reports. https://doi.org/10.1038/s41598-023-41113-5

    Article  MATH  Google Scholar 

  13. Ilakkiya, N., & Rajaram, A. (2023). Blockchain-assisted secure routing protocol for cluster-based mobile-ad hoc networks. International Journal of Computers Communications & Control. https://doi.org/10.15837/ijccc.2023.2.5144

    Article  MATH  Google Scholar 

  14. Masood, A., Hameed, M. M., Srivastava, A., Pham, Q. B., Ahmad, K., Razali, S. F., & Baowidan, S. A. (2023). Improving PM2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm. Scientific Reports, 13, 21057.

    Article  Google Scholar 

  15. Sharmin, S., Ahammad, T., Talukder, M., & Ghose, P. (2023). A hybrid dependable deep feature extraction and ensemble-based machine learning approach for breast cancer detection. IEEE Access, 11, 87694–87708.

    Article  Google Scholar 

  16. Ali, J., & Khan, M. F. (2023). A trust-based secure parking allocation for IoT-enabled sustainable smart cities. Sustainability, 15, 6916.

    Article  MATH  Google Scholar 

  17. Jafari, S., Byun, Y. C., & Ko, S. (2023). A novel approach for predicting remaining useful life and capacity fade in lithium-ion batteries using hybrid machine learning. IEEE Access, 11, 131950–131963.

    Article  MATH  Google Scholar 

  18. Asghar, Z., Hafeez, K., Sabir, D., Ijaz, B., Bukhari, S. S., & Ro, J. (2023). Reclaim: Renewable energy based demand-side management using machine learning models. IEEE Access, 11, 3846–3857.

    Article  Google Scholar 

  19. Chaparala, A., Jain, P. K., Karamti, H., & Karamti, W. (2023). Monitor the strength status of buildings using hybrid machine learning technique. IEEE Access, 11, 26441–26458.

    Article  Google Scholar 

  20. Kennedy, L., Sandhu, J.K., Harper, M., & Čuperlović-Culf, M. (2023). Mapping relationships between glutathione and SLC25 transporters in cancers using hybrid machine learning models. bioRxiv.

  21. Nur, A. S., Kim, Y. J., Lee, J., & Lee, C. (2023). Spatial prediction of wildfire susceptibility using hybrid machine learning models based on support vector regression in sydney Australia. Remote Sensing, 15, 760.

    Article  MATH  Google Scholar 

  22. Lee, M., Kunzi, M., Neurohr, G.E., Lee, S.S., & Park, Y. (2023). Hybrid machine-learning framework for volumetric segmentation and quantification of vacuoles in individual unlabeled yeast cells using holotomography. bioRxiv.

  23. Mallampati, B., Ishaq, A., Rustam, F., Kuthala, V., Alfarhood, S., & Ashraf, I. (2023). Brain tumor detection using 3D-UNet segmentation features and hybrid machine learning model. IEEE Access, 11, 135020–135034.

    Article  Google Scholar 

  24. Almasoudi, F. M. (2023). Enhancing power grid resilience through real-time fault detection and remediation using advanced hybrid machine learning models. Sustainability, 15, 8348.

    Article  MATH  Google Scholar 

  25. Zafar, A., Che, Y. B., Ahmed, M., Sarfraz, M., Ahmad, A., & Alibakhshikenari, M. (2023). Enhancing power generation forecasting in smart grids using hybrid autoencoder long short-term memory machine learning model. IEEE Access, 11, 118521–118537.

    Article  Google Scholar 

  26. Razali, N. A., Malizan, N. A., Hasbullah, N. A., Wook, M., Zainuddin, N. M., Ishak, K. K., Ramli, S., & Sukardi, S. (2023). Political security threat prediction framework using hybrid lexicon-based approach and machine learning technique. IEEE Access, 11, 17151–17164.

    Article  Google Scholar 

  27. Liu, Y., Li, N., Qi, J., Xu, G., Zhao, J., Wang, N., Huang, X., Jiang, W., Justet, A., Adams, T.S., Homer, R., Amei, A., Rosas, I.O., Kaminski, N., Wang, Z., & Yan, X. (2023). A hybrid machine learning and regression method for cell type deconvolution of spatial barcoding-based transcriptomic data. bioRxiv.

  28. Tang, W., Brown, K., Mitchell, D., Blanche, J., & Flynn, D. (2023). Subsea power cable health management using machine learning analysis of low-frequency wide-band sonar data. Energies, 16, 6172.

    Article  Google Scholar 

  29. Liu, X., Zhang, X., & Baziar, A. (2023). Hybrid machine learning and modified teaching learning-based english optimization algorithm for smart city communication. Sustainability, 15, 11535.

    Article  MATH  Google Scholar 

  30. Khalid, R., Ullah, A., Khan, A., Khan, A., & Inayat, M. H. (2023). Comparison of standalone and hybrid machine learning models for prediction of critical heat flux in vertical tubes. Energies, 16, 3182.

    Article  MATH  Google Scholar 

  31. Ali, S. S., Kaur, R., Persis, D. J., Saha, R., Pattusamy, M., & Sreedharan, V. R. (2023). Developing a hybrid evaluation approach for the low carbon performance on sustainable manufacturing environment. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03877-1

    Article  MATH  Google Scholar 

  32. Ali, S. S., Ersöz, F., Kaur, R., Altaf, B., & Weber, G. W. (2021). A quantitative analysis of low carbon performance in industrial sectors of developing world. Journal of cleaner production, 284, 125268.

    Article  Google Scholar 

  33. Lotfi, R., Gholamrezaei, A., Kadłubek, M., Afshar, M., Ali, S. S., & Kheiri, K. (2022). A robust and resilience machine learning for forecasting agri-food production. Scientific Reports, 12(1), 21787.

    Article  Google Scholar 

  34. Ranjbarzadeh, R., Dorosti, S., Ghoushchi, S. J., Caputo, A., Tirkolaee, E. B., Ali, S. S., & Bendechache, M. (2023). Breast tumor localization and segmentation using machine learning techniques: Overview of datasets, findings, and methods. Computers in Biology and Medicine, 152, 106443.

    Article  Google Scholar 

  35. Ranjbarzadeh, R., Jafarzadeh Ghoushchi, S., Tataei Sarshar, N., Tirkolaee, E. B., Ali, S. S., Kumar, T., & Bendechache, M. (2023). ME-CCNN: Multi-encoded images and a cascade convolutional neural network for breast tumor segmentation and recognition. Artificial Intelligence Review, 56(9), 10099–10136.

    Article  Google Scholar 

  36. Lotfi, R., Hazrati, H., Ali, S. S., Sharifmousavi, S. M., Khanbaba, A., & Amra, M. (2023). Antifragile, sustainable and agile healthcare waste chain network design by considering blockchain, resiliency, robustness and risk. Central European Journal of Operations Research. https://doi.org/10.1007/s10100-023-00874-0

    Article  Google Scholar 

  37. Lotfi, R., Mardani, N., Ali, S. S., Pahlevan, S. M., & Davoodi, S. M. R. (2024). A robust and risk-averse medical waste chain network design by considering viability requirements. RAIRO-Operations Research, 58(2), 1473–1497.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lotfi, R., MohajerAnsari, P., Nevisi, M. M. S., Afshar, M., Davoodi, S. M. R., & Ali, S. S. (2024). A viable supply chain by considering vendor-managed-inventory with a consignment stock policy and learning approach. Results in Engineering, 21, 101609.

    Article  MATH  Google Scholar 

  39. Lotfi, R., Hazrati, R., Aghakhani, S., Afshar, M., Amra, M., & Ali, S. S. (2024). A data-driven robust optimization in viable supply chain network design by considering open innovation and blockchain technology. Journal of Cleaner Production, 436, 140369.

    Article  Google Scholar 

  40. Lotfi, R., Khanbaba, A., Ali, S. S., Afshar, M., Mehrjardi, M. S., & Omidi, S. (2024). Net-zero, resilience, and agile closed-loop supply chain network design considering robustness and renewable energy. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-32661-y

    Article  MATH  Google Scholar 

Download references

Acknowledgements

There is no acknowledgement involved in this work.

Funding

No funding is involved in this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors are contributed equally to this work.

Corresponding author

Correspondence to G. Arulselvan.

Ethics declarations

Conflict of interest

Conflict of Interest is not applicable in this work.

Ethics approval and consent to participate

No participation of humans takes place in this implementation process.

Human and animal rights

No violation of Human and Animal Rights is involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulselvan, G., Rajaram, A. Routing attacks detection in MANET using trust management enabled hybrid machine learning. Wireless Netw 31, 1481–1495 (2025). https://doi.org/10.1007/s11276-024-03846-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-024-03846-7

Keywords