Skip to main content

Advertisement

Log in

A robust MMSE-DFE framework with joint time-frequency domain processing for UAV-to-ground SC-FDE communication systems

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a robust block MMSE-DFE (joint minimum mean square error and decision feedback equalization) framework with joint time-frequency domain processing is developed for UAV-to-Ground single carrier modulation with frequency domain equalization (SC-FDE) communication systems. Two important issues related to iterative block decision feedback equalization (IBDFE) are discussed here, i.e., the complexity of iterative operations and the feedback symbols reliability. Firstly, in order to simplify the operation process, we directly use the results of MMSE to avoid the complexity of iterative operation. Then in the feedback loop of the MMSE-DFE, we proposed a criterion for feedback symbol metric, which could help us control the error propagation process. This results in the improvement of the error propagation, one of the common problems in a DFE or IBDFE. Finally, simulation results demonstrate the robustness of our designed block MMSE-DFE with joint time-frequency domain processing. Firstly, the feedback correlation measurement criteria proposed in this paper can greatly control the error propagation of DFE, and further improve the balancing performance of DFE equalizer. Second, the equalization framework proposed in this paper can adapt to different modulation modes, different equalization algorithms, and can be well combined with coding algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Interested readers can contact the corresponding author about the procedures and data in this paper.

References

  1. Zhang, J. (2021). Aeronautical mobile communication: The evolution from narrowband to broadband. Engineering, 7(4), 431–434. https://doi.org/10.1016/j.eng.2021.02.002

    Article  MathSciNet  MATH  Google Scholar 

  2. Zeng, Y., Zhang, R., & Joon, J. T. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42. https://doi.org/10.1109/MCOM.2016.7470933

    Article  MATH  Google Scholar 

  3. Matolak, D. W. (2015). Unmanned aerial vehicles: Communications challenges and future aerial networking, 567–572. https://doi.org/10.1109/ICCNC.2015.7069407

  4. Quan, Y. U., Wang, J., & Bai, L. (2016). Architecture and critical technologies of space information networks. Journal of Communications and Information Networks, 1, 1–9.

    Article  MATH  Google Scholar 

  5. Cheng, X., Chen, C., Zhang, W., & Yang, Y. (2017). 5g-enabled cooperative intelligent vehicular (5genciv) framework: When Benz meets Marconi. IEEE Intelligent Systems, 32(3), 53–59. https://doi.org/10.1109/MIS.2017.53

    Article  Google Scholar 

  6. Sharma, A., Vanjani, P., Paliwal, N., Basnayaka, C. M. W., & Muthuchidambaranathan, P. (2020). Communication and networking technologies for uavs: A survey. Journal of Network and Computer Applications, 168(10), 1–18. https://doi.org/10.1016/j.jnca.2020.102739

    Article  Google Scholar 

  7. Peña-Campos, F., Parra-Michel, R., & Kontorovich, V. (2019). Mimo multicarrier transmission over doubly selective channels with virtual trajectories receiver. IEEE Transactions on Vehicular Technology, 68(10), 9330–9338. https://doi.org/10.1109/TVT.2019.2934693

    Article  MATH  Google Scholar 

  8. Mohanan, A., & Thangaraj, A. (2019). Dual capacity upper bounds for binary-input single-tap isi channels. IEEE Transactions on Communications, 67(10), 6725–6734. https://doi.org/10.1109/TCOMM.2019.2927209

    Article  MATH  Google Scholar 

  9. Yang, Y., Zheng, B., Zhang, S., & Zhang, R. (2020). Intelligent reflecting surface meets ofdm: Protocol design and rate maximization. IEEE Transactions on Communications, 68(7), 4522–4535. https://doi.org/10.1109/TCOMM.2020.2981458

    Article  MATH  Google Scholar 

  10. Kim, H.-K., Cho, Y., & Jo, H.-S. (2019). Adjacent channel compatibility evaluation and interference mitigation technique between earth station in motion and imt-2020. IEEE Access, 8, 213185–213205. https://doi.org/10.1109/ACCESS.2020.3039799

    Article  MATH  Google Scholar 

  11. Li, J., Zeng, X., Yin, C., Luo, Q., & Li, G. (2021). A low-complexity crc-based decoding algorithm for slm-ml ofdm systems. IEEE Wireless Communications Letters, 10(6), 1144–1147. https://doi.org/10.1109/LWC.2020.3042676

    Article  MATH  Google Scholar 

  12. Guerreiro, J., Dinis, R., & Montezuma, P. (2019). Low-complexity sc-fde techniques for massive mimo schemes with low-resolution adcs. IEEE Transactions on Communications, 67(3), 2368–2380. https://doi.org/10.1109/TCOMM.2018.2881462

    Article  MATH  Google Scholar 

  13. Zhe, P., Zhu, Y., & Letaief, K. B. (2018). Robust single-carrier frequency-domain equalization for broadband mimo systems with imperfect channel estimation. IEEE Transactions on Wireless Communications, 2017(7), 4432–4446. https://doi.org/10.1109/TWC.2018.2825340

    Article  MATH  Google Scholar 

  14. Forney, G. (1972). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory, 18(3), 363–378. https://doi.org/10.1109/TIT.1972.1054829

    Article  MathSciNet  MATH  Google Scholar 

  15. Barbu, O.-E., Manchón, C. N., Rom, C., & Fleury, B. H. (2017). Message-passing receiver for ofdm systems over highly delay-dispersive channels. IEEE Transactions on Wireless Communications, 16(3), 1564–1578. https://doi.org/10.1109/TWC.2017.2648784

    Article  Google Scholar 

  16. Pham, T., Le-Ngoc, T., Woodward, G., Martin, P. A., & Phan, K. T. (2016). Equalization for mimo-ofdm systems with insufficient cyclic prefix, 1–5. https://doi.org/10.1109/VTCSpring.2016.7504240

  17. Duan, H., Yu, X., & Hou, Y. (2015). Efficient channel parameters estimation design for sc-fde in hf wireless communications, 1338–1342. https://doi.org/10.1109/CISP.2015.7408090

  18. Lin, Z., Xiao, P., Vucetic, B., & Sellathurai, M. (2010). Analysis of receiver algorithms for lte lte sc-fdma based uplink mimo systems. IEEE Transactions on Wireless Communications, 9(1), 60–65. https://doi.org/10.1109/TWC.2010.01.090199

    Article  MATH  Google Scholar 

  19. Balevi, E. (2016). Analysis of frequency domain oversampled mmse sc-fde. IEEE Communications Letters, 20(2), 232–235. https://doi.org/10.1109/LCOMM.2015.2504927

    Article  MATH  Google Scholar 

  20. Long, Z., Wang, H., Nan, W. U., Kuang, J., Informationelectronics, S. O., & Technology, B. (2018). Turbo equalization based on joint gaussian, sic-mmse and lmmse for nonlinear satellite channels. Science China (Information Sciences), 61, 151–163. https://doi.org/10.1007/s11432-016-9056-5

    Article  MathSciNet  Google Scholar 

  21. Proakis, J. (1995). Digital communications. New York: McGraw-Hill.

    MATH  Google Scholar 

  22. Benvenuto, N., Dinis, R., Falconer, D., & Tomasin, S. (2010). Single carrier modulation with nonlinear frequency domain equalization: An idea whose time has come-again. Proceedings of the IEEE, 98(1), 69–96. https://doi.org/10.1109/JPROC.2009.2031562

    Article  Google Scholar 

  23. Benvenuto, N., & Tomasin, S. (2002). Block iterative dfe for single carrier modulation. IET Electronics Letters, 38(19), 1144–1145. https://doi.org/10.1049/el:20020767

    Article  MATH  Google Scholar 

  24. Jiang, X., Su, W., & Cheng, E. (2017). Combined hybrid dfe and cck remodulator for medium-range single-carrier underwater acoustic communications. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2017/4096061

    Article  MATH  Google Scholar 

  25. Pedrosa, P., Castanheira, D., Silva, A., Dinis, R., & Gameiro, A. (2020). Efficient joint channel equalization and tracking for v2x communications using sc-fde schemes. IEEE Access, 8, 55158–55169. https://doi.org/10.1109/ACCESS.2020.2981717

    Article  MATH  Google Scholar 

  26. Ribeiro, F. C., Dinis, R., Cercas, F., & Silva, A. (2017). Analytical ber performance evaluation in siso and mimo environments with sc-fde modulations and ib-dfe receivers. Wireless Personal Communications, 96(3), 3831–3850. https://doi.org/10.1007/s11277-017-4353-6

    Article  Google Scholar 

  27. Casal Ribeiro, F., Guerreiro, J., Dinis, R., Cercas, F., & Silva, A. (2017). Robust receivers for base station cooperation systems. Digital Signal Processing, 64(5), 8–16. https://doi.org/10.1016/j.dsp.2017.02.002

    Article  MathSciNet  Google Scholar 

  28. Ribeiro, F. C., Dinis, R., Cercas, F., & Silva, A. (2015). Receiver design for the uplink of base station cooperation systems employing sc-fde modulations. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-014-0237-6

    Article  Google Scholar 

  29. C, Y.K., Y, S.J. (2013) Digital Communication: Theory and Systems (pp. 228–229). Beijing: Publishing House of Electronics Industry.

  30. Wang Q, Z.J. Yuan J, Y, L.: A robust low complexity frequency domain iterative block DFE for SC-FDMA system, pp. 5042–5046. Proc. IEEE Int. Conf. Commun. (ICC), Budapest, Hungary (2013)

  31. Silva, A., Assunçao, J., Dinis, R., & Gameiro, A. (2023). Performance evaluation of ib-dfe-based strategies for sc-fdma systems. EURASIP Journal on Wireless Communications and Networking, 292(2013), 1–10. https://doi.org/10.1186/1687-1499-2013-292

    Article  MATH  Google Scholar 

  32. Nassiri, M., & Baghersalimi, G. (2018). Comparative performance assessment between fft-based and frft-based mimo-ofdm systems in underwater acoustic communications. IET Communications, 12(6), 719–726. https://doi.org/10.1049/iet-com.2017.0776

    Article  MATH  Google Scholar 

  33. Benvenuto, N., & Tomasin, S. (2005). Iterative design and detection of a dfe in the frequency domain. IEEE Transactions on Communications, 53(11), 1867–1875. https://doi.org/10.1109/TCOMM.2005.858666

    Article  MATH  Google Scholar 

  34. Hirschausen, P., Davis, L.M., Haley, D., & Lever, K. (2014). Identifying key design parameters for Monte Carlo simulation of doppler spread channels. 2014 Australian Communications Theory Workshop (AusCTW), 33–38. https://doi.org/10.1109/AusCTW.2014.6766424

  35. Liu, Y., Chen, X., Yuan, D., & Hu, D. (2022). An estimated d-based iterative block decision feedback equalization in sc-fde system. Electronics, 11(20), 3397. https://doi.org/10.3390/electronics11203397

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JM-220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Pengyu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Section title of first appendix

Appendix A: Section title of first appendix

For the IBDFE design, the Lagrange method can be used to solve the minimum solution of the Eq. (10). Under the constraint of Eq. (A1), the Lagrange function is defined as Eq. (A2):

$$\begin{aligned}&\sum \limits _{k = 0}^{N - 1} {B_k^{\left( l \right) }} = 0, \end{aligned}$$
(A1)
$$\begin{aligned}&\begin{array}{c} f\left( {{{\textbf{C}}^{\left( l \right) }},{{\textbf{B}}^{\left( l \right) }},{\lambda ^{\left( l \right) }}} \right) = \frac{1}{{{N^2}}}\sum \limits _{k = 0}^{K - 1} {{{\left| {C_k^{\left( l \right) }} \right| }^2}{M_w}} + {\left| {C_k^{\left( l \right) }{H_k} - 1} \right| ^2}{M_{{S_k}}} + {\left| {B_k^{\left( l \right) }} \right| ^2}{M_{\hat{S}_k^{\left( {l - 1} \right) }}}\\ + 2\Re \left[ {B_{k}^{{(l)^{*}}}\left( {C_k^{\left( l \right) }{H_k} - 1} \right) {r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}}} \right] + {\lambda ^{\left( l \right) }}\sum \limits _{k = 0}^{K - 1} {B_k^{\left( l \right) }} \end{array}, \end{aligned}$$
(A2)

where \({\lambda ^{\left( l \right) }}\) is the Lagrange multiplier. It is assumed that \({r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}}\), \({M_{{S_k}}}\), and \({M_{\hat{S}_k^{\left( {l - 1} \right) }}}\) are independent of each other with respect to different frequencies k.

Taking the derivative of \(f\left( {{{\textbf{C}}^{\left( l \right) }},{{\textbf{B}}^{\left( l \right) }},{\lambda ^{\left( l \right) }}} \right)\) with respect to \(B_k^{\left( l \right) }\), \(C_k^{\left( l \right) }\), and \({\lambda ^{\left( l \right) }}\), and setting it equal to 0, yields:

$$\begin{aligned}&\frac{{\partial f\left( {{{\textbf{C}}^{\left( l \right) }},{{\textbf{B}}^{\left( l \right) }},{\lambda ^{\left( l \right) }}} \right) }}{{\partial C_k^{\left( l \right) }}} = 2C_k^{\left( l \right) }{M_w} \nonumber \\&\quad + 2\left[ {C_k^{\left( l \right) }{H_k} - 1} \right] H_k^{*}{M_{{S_k}}} + 2B_k^{\left( l \right) }H_k^{*}r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}^{*} = 0, \end{aligned}$$
(A3)
$$\begin{aligned}&\frac{{\partial f\left( {{{\textbf{C}}^{\left( l \right) }},{{\textbf{B}}^{\left( l \right) }},{\lambda ^{\left( l \right) }}} \right) }}{{\partial B_k^{\left( l \right) }}} = 2B_k^{\left( l \right) }{M_{\hat{S}_k^{\left( {l - 1} \right) }}} + {\lambda ^{\left( l \right) }} \nonumber \\&\quad + 2\left[ {C_k^{\left( l \right) }{H_k} - 1} \right] {r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}} = 0, \end{aligned}$$
(A4)
$$\begin{aligned}&\frac{{\partial f\left( {{{\textbf{C}}^{\left( l \right) }},{{\textbf{B}}^{\left( l \right) }},{\lambda ^{\left( l \right) }}} \right) }}{{\partial {\lambda ^{\left( l \right) }}}} = \sum \limits _{k = 0}^{N - 1} {B_k^{\left( l \right) }} = 0, \end{aligned}$$
(A5)

where \(k = 0,\;1,\; \cdots ,\;N - 1\).

According to the Eq. (A4), it can be obtained:

$$\begin{aligned} B_k^{\left( l \right) } = - \frac{1}{{{M_{\hat{S}_k^{\left( {l - 1} \right) }}}}}\left[ {{r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}}\left[ {C_k^{\left( l \right) }{H_k} - 1} \right] - \frac{{{\lambda ^{\left( l \right) }}}}{2}} \right] . \end{aligned}$$
(A6)

For any k, the above expression can be rewritten as follows:

$$\begin{aligned} B_k^{\left( l \right) } = - \frac{{{r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}}}}{{{M_{\hat{S}_k^{\left( {l - 1} \right) }}}}}\left[ {C_k^{\left( l \right) }{H_k} - {\gamma ^{\left( l \right) }}} \right] , \end{aligned}$$
(A7)

where \({\gamma ^{\left( l \right) }}\) is to be able to hold the Eq. (A5), \({\gamma ^{\left( l \right) }}\) can be expressed as follows:

$$\begin{aligned} {\gamma ^{\left( l \right) }} = \sum \limits _{k = 0}^{N - 1} {C_k^{\left( l \right) }{H_k}}. \end{aligned}$$
(A8)

For the derivation of the forward filter coefficient, by bringing Eq. (A7) into Eq. (A3), we get:

$$\begin{aligned}&2C_k^{\left( l \right) }{M_w} + 2\left[ {C_k^{\left( l \right) }{H_k} - 1} \right] H_k^{*}{M_{{S_k}}} \nonumber \\&\quad - 2\frac{{{r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}}}}{{{M_{\hat{S}_k^{\left( {l - 1} \right) }}}}}\left[ {C_k^{\left( l \right) }{H_k} - {\gamma ^{\left( l \right) }}} \right] H_k^{*}r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}^{*} = 0. \end{aligned}$$
(A9)

By solving the above equation, we can get:

$$\begin{aligned} C_k^{\left( l \right) } = \frac{{H_k^{*}{M_{{S_k}}}\left( {1 - \frac{{{{\left| {{r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}}} \right| }^2}}}{{{M_{\hat{S}_k^{\left( {l - 1} \right) }}}{M_{{S_k}}}}}{\gamma ^{\left( l \right) }}} \right) }}{{{M_w} + {M_{{S_k}}}\left( {1 - \frac{{{{\left| {{r_{{S_k},\hat{S}_k^{\left( {l - 1} \right) }}}} \right| }^2}}}{{{M_{\hat{S}_k^{\left( {l - 1} \right) }}}{M_{{S_k}}}}}} \right) {{\left| {{H_k}} \right| }^2}}}. \end{aligned}$$
(A10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pengyu, D., Xin, X., Peng, W. et al. A robust MMSE-DFE framework with joint time-frequency domain processing for UAV-to-ground SC-FDE communication systems. Wireless Netw 31, 2955–2974 (2025). https://doi.org/10.1007/s11276-025-03919-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-025-03919-1

Keywords