Skip to main content

Advertisement

Log in

Reconfigurable Antenna for Future Wireless Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper deals with the processing techniques which are known as reconfigurable antennas: these methods are foreseen to be a booster for the future high rate wireless communications, both for the benefits in terms of performance and for the capacity gains. In particular, adaptive digital signal processing can provide improved performance for the desired signal in terms of error probability or signal-to-noise ratio while the bandwidth efficiency can be increased linearly with the number of transmitting and receiving antennas. In this article, the main antenna processing techniques are reviewed and described, aiming at highlighting performance/complexity trade-offs and how they could be implemented in the future systems. The coexistence of all these different technologies in a wireless environment requires high efficiency and flexibility of the transceiver. Future transceiver implementations which are based on the Software Defined Radio technology are also reviewed and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Jakes, Microwave Mobile Communications. John Wiley and Sons, New York, 1974.

  2. J.G. Proakis, Digital Communications. McGraw-Hill, New York, USA, 2nd edn., 1989.

  3. Parsons J.D. (1992) The Mobile Radio Propagation Channel. Pentech Press, London

    Google Scholar 

  4. A. Naguib, Adaptive Antennas for CDMA Wireless Networks. Ph.D. Thesis, Stanford University, Stanford, USA, 1996.

  5. Sklar B. (1997) “Rayleigh Fading Channels in Mobile Digital Communication Systems Part I: Characterization”. IEEE Commun. pag. 35(7): 90–100

    Article  Google Scholar 

  6. Sklar B. (1997) “Rayleigh Fading Channels in Mobile Digital Communication Systems Part II: Mitigation”. IEEE Commun. Mag. 35(7): 102–109

    Article  Google Scholar 

  7. Ertel R.B., Cardieri P., Sowerby K.W., Rappaport T.S., Reed J.H. (1998) “Overview of Spatial Channel Models for Antenna Array Communication Systems”. IEEE Pers. Commun. 5(1): 10–22

    Article  Google Scholar 

  8. G. Wetzker, U. Kaage, and F. Jondral, “A Simulation Method for Doppler Spectra”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, Vol. 2, pp. 517–521, 1998.

  9. T. Fulghum and K. Molnar, “The Jakes Fading Model Incorporating Angular Spread for a Disk of Scatters”, in Proc. IEEE Veh. Technol. Conf., Ottawa, Canada, pp. 489–493, 1998.

  10. P.V. Rooyen, M.P. Lotter, and D.V. Wyk, Space-Time Processing for CDMA Communications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1st edn., 1999.

  11. X. Wang and H. Poor, “Space-Time Processing in Multiple-Access Systems”, in Proc. IEEE Wireless Commun. Networking Conf., Vol. 1, pp. 129–133, 1999.

  12. Fleury B.H. (2000) “First- and Second-Order Characterization of Direction Dispersion and Space Selectivity in the Radio Channel”. IEEE Trans. Inform. Theory. 46(6):2027–2044

    Article  MATH  Google Scholar 

  13. M. Stege, J. Jelitto, M. Bronzel, and G. Fettweis, “A Multiple Input-Multiple Output Channel Model for Simulation of Tx- and Rx- Diversity Wireless Systems”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 833–839, 2000.

  14. K.I. Pedersen, J.B. Andersen, J.P. Kermoal, and P. Mogensen, “A Stohastic Multipleinput Moultiple-Output Radio Channel Model for Evaluation of Space-time Coding Algorithms”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 893-897, 2000.

  15. J.S. Hammerschmidt and A.A. Hutter, “Spatio-Temporal Channel Models for the Mobile Station: Concept, Parameters, and Canonical Implementation”, in Proc. IEEE Veh. Technol. Conf., Vol. 3, pp. 1641–1645, 2000.

  16. T. Klingenbrunn, and P. Mogensen, “Modelling Radio Link Performance in UMTS W-CDMA Network Simulations”, in Proc. IEEE Veh. Technol. Conf., Vol. 2, pp. 1011–1015, 2000.

  17. Chen T.A., Fitz M.P., Kuo W.Y., Zoltowski M.D., Grim J.H. (2000) “A Space-Time Model for Frequency Non-Selective Rayleigh Fading Channels with Applications to Space-Time Modems”. IEEE J. Select Areas Commun. 18(7): 1175–1190

    Article  Google Scholar 

  18. T. Ottersten, “Array Processing for Wireless Communications”, in Proc. Workshop Sign. Process. Statist. Array Process., pp. 466–473, 1996.

  19. Paulraj A.J., Papadias C.B. (1997) “Space-time Processing for Wireless Communications”. IEEE Signal Processing Mag. 14(6): 49–83

    Article  Google Scholar 

  20. Godara L.C. (1997) “Applications of Antenna Arrays to Mobile Communications, Part I: Performance Improvement, Feasibility and System Considerations”. Proc. IEEE. 85(7): 1031–1060

    Article  Google Scholar 

  21. Godara L.C. (1997) “Applications of Antenna Arrays to Mobile Communications, Part II: Beam-Forming and Direction-of-Arrival Considerations”. Proc IEEE 85(8): 1195–1245

    Article  Google Scholar 

  22. Paulraj A.J., Ng B.N. (1998) “Space-Time Modems for Wireless Personal Communications”. IEEE Pers. Commun. 5(1): 36–48

    Article  Google Scholar 

  23. J.H. Winters, “Smart Antennas for Wireless Systems”, IEEE Commun. Mag., pp. 23–27, 1998.

  24. Kohno R. (1998) “Spatial and Temporal Communication Theory using Adaptive Antenna Array”. IEEE Pers. Commun. 5(1): 28–35

    Article  MathSciNet  Google Scholar 

  25. A.J. Paulraj and E. Lindskog, “Taxonomy of Space-Time Processing for Wireless Networks”, IEE J. Radar Sonar and Navig. Vol. 145, No. 1, 1998.

  26. G.V. Tsoulos, “Smart Antennas for Mobile Communication Systems: Benefits and Challenges”, Electronics Commun. Engineering J., pp. 84–94, 1999.

  27. Sheikh K., Gesbert D., Gore D., Paulraj A. (1999) “Smart Antennas for Broadband Wireless Access Networks”. IEEE Commun. Mag. 37(11): 100–105

    Article  Google Scholar 

  28. D. Falconer, A. Leganin, and S. Roy, “Receiver Spatial-Temporal Signal Processing for Broadband Wireless Systems”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.

  29. J. Choi and S. Choi, “Diversity Gain for CDMA Systems Equipped with Antenna Arrays”, IEEE Trans. Veh. Technol. submitted 2002.

  30. S.S. Jeng, G. Xu, H.P. Lin, and W.J. Vogel, “Experimental Study of Antenna Arrays in Indoor Wireless Applications”, in Proc. Conf. Asilomar Sign., Syst., Comp., Vol. 2, pp. 766–770, 1995.

  31. P.B. Rapajic, “Information Capacity of the Space Division Multiple Access Mobile Communication System”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, Vol. 3, pp. 946–950, 1998.

  32. M.P. Lotter, and P.V. Rooyen, “An Overview of Space Division Multiple Access Techniques in Cellular Systems”, in Proc. Symp. South Afric. Commun. Sign. Process., pp. 161–164, 1998.

  33. U. Vornefeld, C. Walke, and B. Walke, “SDMA Techniques for Wireless ATM”, IEEE Commun. Mag. pp. 52–57, 1999.

  34. E. Del Re, L. Pierucci, and S. Marapodi, “On the Application of DOA Estimation Techniques to UMTS System”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, Praha, CK, 2002.

  35. T. Svantesson, “A Study of Polarization Diversity using an Electromagnetic Spatio-Temporal Channel Model”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.

  36. F. Argenti, T. Bianchi, L. Mucchi, and L.S. Ronga, Ultra-Wideband Transmission with Polarization Diversity. UWB Communication Systems - A Comprehensive Overview. EURASIP Book. To be published, 2004.

  37. V. Tarokh, S.M. Alamouti, and P. Poon, “New Detection Schemes for Transmit Diversity with no Channel Estimation”, in Proc. IEEE Int. Conf. Universal Pers. Commun., Florence, Italy, Vol. 2, pp. 917–920, 1998.

  38. Tarokh V., Jafarkhani H. (2000) “A Differential Detection Scheme for Transit Diversity”. IEEE J. Select Areas Commun. 18(7): 1043–1047

    Article  Google Scholar 

  39. Hochwald B.M., Marzetta T.L. (2000) “Unitary Space-Time Modulation for Multipleantenna Communications in Rayleigh Flat Fading”. IEEE Trans. Inform Theory 46(2): 543–563

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Grant and C. Schlegel, “Differential Turbo Space-Time Coding”, in Proc. IEEE Inf. Th. Workshop, Cairns, Australia, pp. 467–471, 2001.

  41. A. Steiner, M. Peleg, and S. Shamai, “Turbo Coded Space-Time Unitary Matrix Differential Modulation”, in Proc. IEEE Veh. Technol. Conf., Rhodes, Greece, Vol. 2, pp. 1352–1356, 2001.

  42. I. Bahceci and T.M. Duman, “Combined Turbo Coding and Unitary Space-time Modulation”, in Proc. IEEE Int. Symp. Inform. Theory, Washington DC, USA, p. 106, 2001.

  43. B. Gozali, et al., “Virginia Tech Space-Time Advanced Radio (VT-STAR)”, in Proc. Conf. Radio and Wireless Commun., pp. 227–231, 2001.

  44. J. Borran, A. Sabharwal, B. Aazhang, and D. Johnson, “On Design Criteria and Construction of Non-Coherent Space-Time Constellations”, in Proc. IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland, p. 74, 2002.

  45. S. Barbarossa, and A. Scaglione, “Optimal Precoding for Transmissions over Linear Time-Varying Channels”, in Proc. IEEE Global Telecommun. Conf., Rio de Janeiro, Brasil, pp. 2545–2549, 1999.

  46. J. Kim and J.M. Cioffi, “Spatial Multiuser Access with Antenna Diversity using Singular Value Decomposition”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, Vol. 2, pp. 1253–1257, 2000.

  47. S.K. Lai, R.S.K. Cheng, K.B. Letaief, and R.D. Murch, “Adaptive Trellis Coded MQAM and Power Optimization for OFDM Transmission”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, pp. 290–294, 1999.

  48. G.K. Myers, and S.G. Wilson, “Concatenated Space-Time Coding with Transmitter Precoloring”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.

  49. Tarokh V., Seshadri N., Calderbank A.R. (1998) “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction”. IEEE Trans. Inform Theory 44(2): 744–765

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Wittneben, “A New Bandwidth Efficient Transmit Antenna Modulation Diversity Scheme for Linear Digital Modulation”, in Proc. IEEE Int. Conf. Commun., Vol. 3, pp. 1630–1634, 1993.

  51. N. Seshadri, and J.H. Winters, “Two Signaling Schemes for Improving the Error Performance of Frequency-Division-Duplex (FDD) Transmission Systems using Transmitter Antenna Diversity”, in Proc. IEEE Veh. Technol. Conf., Secaucus, USA, pp. 508–511, 1993.

  52. Winters J.H. (1998) “The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading”. IEEE Trans. Veh. Technol. 47(1): 119–123

    Article  MathSciNet  Google Scholar 

  53. S. Li, X. Tao, W. Wang, P. Zhang, and C. Han, “Generalized Delay Diversity Code: A Simple and Powerful Space-Time Coding Scheme”, in Proc. Conf. ICCT, pp. 1697–1703, 2000.

  54. Tao M., Cheng R.S. (2001) “Improved Design Criteria and New Trellis Codes for Spacetime Coded Modulation in Slow Flat Fading Channels”. IEEE Commun. Lett. 5(7): 313–315

    Article  Google Scholar 

  55. Z. Safar and K.J.R. Liu, “Systematic Space-Time Trellis Code Design for an Arbitary Number of Transmit Antennas”, in Proc. IEEE Veh. Technol. Conf., Rhodes, Greece, pp. 8–12, 2001.

  56. W. Firmanto, J. Yuan, and B. Vucetic, “Space-Time Trellis Coded Modulation for Fast Fading Channels”, in Proc. IEEE Int. Symp. Inform. Theory and its Applications, Honolulu, USA, 2000.

  57. S.A. Zummo and S.A. Al-Semari, “Space-Time Coded QPSK for Rapid Fading Channels”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.

  58. Firmanto W., Yuan B.V.J. (2001) “Space-Time TCM with Improved Performance on Fast Fading Channels”. IEEE Commun. Lett. 5(4): 154–156

    Article  Google Scholar 

  59. Pereira A., Carrasco R.A. (2001) “Space-Time Ring TCM Codes for QPSK on Time varying Fast Fading Channels”. Electron Lett. 37(15): 961–962

    Article  Google Scholar 

  60. Z. Safar and K.J.R. Liu, “Space-Time Trellis Code Construction for Fast Fading Channels”, in Proc. IEEE Int. Conf. Commun., New York, USA, 2002.

  61. Lin X., Blum R.S. (2002) “Systematic Design of Space-Time Codes Employing Multiple Trellis Coded Modulation”. IEEE Trans. Commun. 50(4): 608–615

    Article  Google Scholar 

  62. S.A. Zummo and S.A. Al-Semari, “A Decoding Algorithm for I-Q Space-Time Coded Systems in Fading Environments”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 331–335, 2000.

  63. J. Boutros, F. Boixadera, and C. Lamy, “Bit-Interleaved Coded Modulations for Multiple-Input Multiple-Output Channels”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, New Jersey, USA, pp. 123–126, 2000.

  64. A.M. Tonello, “Space-Time Bit-Interval Coded Modulation with an Iterative Decoding Strategy”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.

  65. A.M. Tonello, “Space-Time Bit-Interval Coded Modulation over Frequency Selective Fading Channels with Iterative Decoding”, in Proc. IEEE Global Telecommun. Conf., San Francisco, 2000.

  66. A.M. Tonello, “On Turbo Equalization of Interleaved Space-Time Codes”, in Proc. IEEE Veh. Technol. Conf., pp. 887–891, 2001.

  67. T. Muharemovic, A. Gatherer, W. Ebel, S. Hosur, and D.H.E. Huang, “Spacetime Codes with Bit Interleaving”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, 2001.

  68. Q. Yan and R.S. Blum, “Robust Space-Time Block Coding for Rapid Fading Channels”, in Proc. IEEE Global Telecommun. Conf., pp. 460–464, 2001.

  69. A.F. Naguib and N. Seshadri, “MLSE and Equalization of Space-Time Coded Signals”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.

  70. A.F. Naguib, “On the Matched Filter Bound of Transmit Diversity Techniques”, in Proc. IEEE Global Telecommun. Conf., San Francisco, USA, 2000.

  71. N. Al-Dhahir, “Overview of Equalization Schemes for Space-Time-Coded Transmission with Application to EDGE”, in Proc. IEEE Veh. Technol. Conf., Vol. 2, pp. 1053–1057, 2001.

  72. N. Al-Dhahir, “Single-Carrier Frequency-Domain Equalization for Spacetimecoded Transmissions over Broadband Wireless Channels”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., pp. 143–146, 2001.

  73. N. Al-Dhahir, “Overview and Comparison of Different Equalization Schemes for Space-Time Coded Signals with Application to EDGE”, IEEE Trans. Signal Process., Vol. 50, No. 10, 2002.

  74. G. Bauch, A.F. Naguib, and N. Seshadri, “MAP Equalization of Space-time Coded Signals over Frequency Selective Channels”, in Proc. IEEE Wireless Commun. And Networking Conf., New Orleans, USA, pp. 261–265, 1999.

  75. B.L. Yeap, T.H. Liew, and L. Hanzo, “Iterative Tree Search Detection for MIMO Wireless Systems”, in Proc. IEEE Veh. Technol. Conf., pp. 1689–1693, 2002.

  76. J.H. Manton and Y. Hua, “Frequency Domain Space Time Coding for MIMO FIR Channels”, in Proc. Conf. Asilomar Sign., Syst., Comp., Pacific Grove, USA, pp. 721–724, 2000.

  77. Y. Liu, P. Fitz, and O.Y. Takeshita, “Space-Time Codes Performance Criteria and Design for Frequency Selective Fading Channels”, in Proc. IEEE Int. Conf. Commun., Helsinki, Finland, 2001.

  78. Gore, S. Sandhu, and A. Paulraj, “Delay Diversity Codes for Frequency Selective Channels”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 1949–1953, 2002.

  79. Tarokh V., Naguib A., Seshadri N., Calderbank A.R. (1999) “Space-Time Codes for High Data Rate Wireless Communication: Performance Criteria in the Presence of Channel Estimation Errors, Mobility, and Multiple Paths”. IEEE Trans. Commun. 47(2): 199–207

    Article  MATH  Google Scholar 

  80. Cozzo and B.L. Hughes, “Joint Detection and Estimation in Space-Time Coding and Modulation”, in Proc. Conf. Asilomar Sign., Syst., Comp., Pacific Grove, USA, Vol. 1, pp. 613–617, 1999.

  81. A. Grant, “Joint Decoding and Channel Estimation for Space-Time Codes”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 416–420, 2000.

  82. C. Cozzo and B.L. Hughes, “Joint Channel Estimation and Data Symbol Detection in Space-Time Communications”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, 2000.

  83. Z. Baranski and A.M. Haimovich, “Iterative Channel Estimation and Sequence Detection for Space-Time Coded Modulation”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.

  84. Zhu X., Murch R.D. (2002) “Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System”. IEEE Trans. Commun. 50(2): 187–191

    Article  Google Scholar 

  85. Tarokh V., Jafarkhani H., Calderbank A.R. (1999) “Space-Time Block Coding for Wireless Communications: Performance Results”. IEEE J Select Areas Commun. 17(3): 451–460

    Article  Google Scholar 

  86. Tarokh V., Jafarkhani H., Calderbank A.R. (1999) “Space-Time Block Codes from Orthogonal Designs”. IEEE Trans. Inform Theory 45(5): 1456–1467

    Article  MATH  MathSciNet  Google Scholar 

  87. A. Agrawal, G. Ginis, and J.M. Cioffi, “Channel Diagonalization through Orthogonal Space-Time Coding”, in Proc. IEEE Int. Conf. Commun., pp. 1621–1624, 2002.

  88. Tirkkonen O., Hottinen A. (2002) “Square-Matrix Embeddable Space-Time Block Codes for Complex Signal Constellations”. IEEE Trans. Inform Theory 48: 384–395

    Article  MATH  MathSciNet  Google Scholar 

  89. Alamouti S. (1998) “A Simple Transmit Diversity Technique for Wireless Communications”. IEEE J. Select Areas Commun. 16(8): 1451–1458

    Article  Google Scholar 

  90. Holma H., Toskal A. (2000) WCDMA for UMTS. John Wiley and Sons, New York

    Google Scholar 

  91. S.M. Alamouti, V. Tarokh, and P. Poon, “Trellis-Coded Modulation and Transmit Diversity: Design Criteria and Performance Evaluation”, in Proc. IEEE Int. Conf. Universal Pers. Commun., Florence, Italy, Vol. 1, pp. 703–707, 1998.

  92. G. Bauch, “Concatenation of Space-Time Block Codes and Turbo TCM”, in Proc. IEEE Int. Conf. Commun., pp. 1202–1206, 1999.

  93. J.C. Guey, “Concatenated Coding for Transmit Diversity Systems”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, pp. 2500–2504, 1999.

  94. A. Yongacoglu and M. Siala, “Space-Time Codes for Fading Channels”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, pp. 2495–2499, 1999.

  95. D.J.V. Wyk, I.J. Oppermann, E. Pretorius, and P.G.W.V. Rooyen, “On the Construction of Layered Space-Time Coded Modulation STCM Codes Employing MTCM Code Design Techniques”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, 1999.

  96. T.H. Liew, J. Pliquett, B.L. Yeap, L.L. Yang, and L. Hanzo, “Comparative Study of Space-Time Block Codes and Various Concatenated Turbo Coding Schemes”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., 2000.

  97. Kunnari and D. Tujkovic, “Performance Evaluation of Space-Time Codes in Wideband CDMA Over Frequency-Selective Rayleigh Fading Downlink Channel”, in Proc. IEEE Int. Conf. Commun., Helsinki, Finland, 2001.

  98. Bauch and J. Hagenauer, “Analytical Evaluation of Space-Time Transmit Diversity with FEC-Coding”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, 2001.

  99. M.J. Borran, M. Memarzadeh, and B. Aazhang, “Design of Coded Modulation Schemes for Orthogonal Transmit Diversity”, in Proc. IEEE Int. Symp. Inform. Theory, Washington DC, USA, p. 339, 2001.

  100. Firmanto W., Yuan J., Vucetic B. (1999) “Turbo Codes with Transmit Diversity: Performance Analysis and Evaluation”. IEICE Trans. Commun. E 1: 82–87

    Google Scholar 

  101. Yuan J., Firmanto W., Vucetic B. (2001) “Trellis Coded 2xMPSK Modulation with Transmit Diversity”. KICS J. Commun. Netw. 45(1): 273–279

    Google Scholar 

  102. Bouzerki and S.L. Miller, “Analytical Tools for Space-Time Codes Over Quasi-Static Fading Channels”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, 2001.

  103. Bouzerki and S.L. Miller, “Upper Bounds on Turbo Codes Performance Over Quasistatic Fading Channels”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.

  104. S. Siwamogsatham and M.P. Fitz, “Improved High-Rate Space-Time Codes Via Concatenation of Expanded Orthogonal Block Code and M-TCM”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 636–640, 2002.

  105. S. Siwamogsatham and M.P. Fitz, “Robust Space-Time Codes for Corelated Fading Channels”, IEEE Trans. Signal Process., Vol. 50, No. 10, 2002.

  106. O. Tirkkonen, A. Boariu, and A. Hottinen, “Minimal Non-Orthogonality Rate 1 Space-Time Block Code for 3+ Tx Antennas”, in Proc. IEEE Veh. Technol. Conf., New Yersey, USA, pp. 429–432, 2000.

  107. Jafarkhani H. (2001) “A Quasi-Orthogonal Space-Time Block Code”. IEEE Trans. Commun. 49(1): 1–3

    Article  MATH  Google Scholar 

  108. W.J. Choi and J.M. Cioffi, “Space-Time Block Codes over Frequency Selective Rayleigh Fading Channels”, in Proc. IEEE Veh. Technol. Conf., Vol. 5, pp. 2541–2545, 1999.

  109. E. Lindskog and A. Paulraj, “A Transmit Diversity Scheme for Channels with Intersymbol Interference”, in Proc. IEEE Int. Conf. Commun., pp. 307–311, 2000.

  110. S. Mudulodu and A. Paulraj, “A Space-Time Coded Transmitter Technique for Frequency Selective Fading Channel”, in Proc. IEEE Global Telecommun. Conf., pp. 1089–1093, 2000.

  111. E.G. Larsson, P. Stoica, E. Lindskog, and J. Li, “Space-Time Block Coding for Frequency-Selective Channels”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 3, pp. 2405–2408, 2002.

  112. A.L. Swindlehurst and G. Leus, “Blind and Semi-Blind Equalization for Generalized Space-Time Block Codes”, IEEE Trans. Signal Process. Vol. 50, No. 10, 2002.

  113. Budianu C., Tong L. (2002) “Channel Estimation for Space-Time Orthogonal Block Codes”. IEEE Trans. Signal Process. 50(10): 2515–2528

    Article  MathSciNet  Google Scholar 

  114. Tarokh V., Lo T.K.Y. (1998) “Principal Ratio Combining for Fixed Wireless Application when Transmitter Diversity is Employed”. IEEE Commun. Lett. 2(8): 223–225

    Article  Google Scholar 

  115. Kim Y.J., Yoon S.Y., Lee H.S. (2000) “Generalised Suboptimum Decoding for Space-Time Codes in Qasistatic Flat Fading Channels”. el 36(2): 168–169

    Google Scholar 

  116. G.J. Foschini, “Layered Space-Time Architecture for Wireless Communications in a Fading Environment when using Multi-Element Antennas”, The Bell System Technical Journal, pp. 41–59, 1996.

  117. H. Huang, H. Viswanathan, and G.J. Foshini, “Achieving High Data Rates in CDMA Systems using BLAST Techniques”, in Proc. IEEE Global Telecommun. Conf., Rio de Janeiro, Brazil, pp. 2316–2320, 1999.

  118. Golden G.D., Foschini C.J., Valenzuela R.A., Wolniansky P.W. (1999) “Detection Algorithm and Initial Laboratory Results using V-BLAST Space-Time Communication Architecture”. el 35(1): 14–16

    Google Scholar 

  119. B. Hassibi, “An Efficient Square-Root Algorithm for BLAST”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 2, pp. 737–740, 2000.

  120. S. Baro, G. Bauch, A. Pavlic, and A. Semmler, “Improving BLAST Performance using Space-Time Block Codes and Turbo Decoding”, in Proc. IEEE Global Telecommun. Conf., San Francisco, 2000.

  121. X. Li, H. Huang, A. Lozano, and G.J. Foshini, “Reduced-Complexity Detection Algorithms for Systems using Multi-Element Arrays”, in Proc. IEEE Global Telecommun. Conf., San Francisco, USA, pp. 1072–1076, 2000.

  122. C.Z.W. Hassell, J.S. Thompson, B. Mulgrew, and P.M. Grant, “A Comparison of Detection Algorithms Including BLAST for Wireless Communication using Multiple Antennas”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.

  123. F.R. Farrokhi, A. Lozano, G.J. Foschini, and R.A. Valenzuela, “Spectral Efficiency of Wireless Systems with Multiple Transmit and Receive Antennas”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.

  124. Wuebben D., Boehnke R., Rinas J., Kuehn V., Kammeyer K.D. (2001) “Efficient Algorithm for Decoding Layered Space-Time Codes”. Electron Lett. 37(22): 1348–1349

    Article  Google Scholar 

  125. Farrokhi F.R., Foschini G.J., Lozano A., Valenzuela R.A. (2001) “Link-Optimal Spacetime Processing with Multiple Transmit and Receive Antennas”. IEEE Commun. Lett. 5(3): 85–87

    Article  Google Scholar 

  126. Lozano A., Papadias C. (2002) “Layered Space-Time Receivers for Frequency Selective Wireless Channels”, IEEE Trans. Commun. 50(1): 65–73

    Article  Google Scholar 

  127. Biglieri E., Taricco G., Tulino A. (2002) “Decoding Space-Time Codes with BLAST Architectures”. IEEE Trans. Signal Process. 50(10): 2547–2552

    Article  Google Scholar 

  128. A. Zanella, M. Chiani, M.Z. Win, and J.H. Winters, “Symbol Error Probability of High Spectral Efficiency MIMO Systems”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.

  129. B.A. Bjerke and J.G. Proakis, “Multiple-Antenna Diversity Techniques for Transmission over Fading Channels”, in Proc. IEEE Wireless Commun. Networking Conf., New Orleans, USA, Vol. 3, pp. 1038–1042, 1999.

  130. E. Biglieri, G. Taricco, and A. Tulino, “Linear Receivers for Multipleantenna Communication Channels: An Asymptotic Analysis”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 1944–1948, 2002.

  131. R.V. Nee, A.V. Zelst, and G. Awater, “Maximum Likelihood Decoding in a Space Division Multiplexing System”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.

  132. G. Awater, A.V. Zelst, and R.V. Nee, “Reduced Complexity Space Division Multiplexing Receivers”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.

  133. X. Li, H. Huang, G.J. Foshini, and R.A. Valenzuela, “Effects of Iterative Detection and Decoding on the Performance of BLAST”, in Proc. IEEE Global Telecommun. Conf., San Francisco, USA, pp. 1061–1066, 2000.

  134. S.L. Ariyavisitakul, “Turbo Space-Time Processing to Improve Wireless Channel Capacity”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, pp. 1238–1242, 2000.

  135. W. Firmanto, J. Yuan, H.L. Lo, and B. Vucetic, “Layered Space-Time Coding: Performance Analysis and Design Criteria”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, pp. 1083–1087, 2001.

  136. K.L. Lo, S. Marinkovic, Z. Chen, and B. Vucetic, “Performance Comparison of Layered Space Time Codes”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 1382–1387, 2002.

  137. B. Hassibi, “An Efficient Square-root Algorithm for BLAST”, The Bell System Technical Journal., 2000.

  138. D. Shiu, “Iterative Decoding for Layered Space-Time Codes”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, 2000.

  139. T. Abe and T. Matsumoto, “Space-Time Turbo Equalization and Symbol Detection in Frequency Selective MIMO Channels”, in Proc. IEEE Veh. Technol. Conf., Rhodes, Greece, pp. 1230–1234, 2001.

  140. Sellathurai M., Haykin S. (2002) “TURBO-BLAST for Wireless Communications: Theory and Experiments”. IEEE Trans Signal Process. 50(10): 2538–2546

    Article  Google Scholar 

  141. Tarokh V., Naguib A., Seshadri N., Calderbank A.R. (1999) “Combined Array Processing and Space-Time Coding”. IEEE Trans. Inform Theory 45(4): 1121–1128

    Article  MATH  MathSciNet  Google Scholar 

  142. H.J. Su and E. Geraniotis, “Maximum Signal-to-Noise Ratio Array Processing for Space-Time Coded System”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.

  143. M. Sellathurai and S. Hsykin,“Turbo-Blast for Wireless Communications: Theory and Experiments”, IEEE Trans. Signal Process., Vol. 50, No. 10, Oct. 2002.

  144. A. Bernacchioni, E. Del Re, R. Fantacci, and L. Pierucci, “T-BLAST Architecture for the IEEE 802.11b context”, in Proc. IEEE Global Telecommun. Conf., San Francisco, CA, USA, 2003.

  145. M. Valenti and B. Woerner, “Performance of Turbo Codes in Interleaved Flat Fading Channels with Estimated Channel State Informaton”, in Vehicular Technology Conference, Vol. 1, pp. 160–174, 1998.

  146. E. K. Hall and G. Wilson, “Design and Analysis of Turbo Codes on Rayleigh Fading Channels”, IEEE J. Select. Areas Commun., Vol. 16, 1998.

  147. T. R. Giallorenzi and S. G. Wilson, “Multiuser ML Sequence Estimator for Convolutionally-Coded Asynchronous DS-CDMA Systems”, IEEE Trans. Commun., Vol. 44, pp. 997–1008, August 1996.

  148. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Errorcorrecting Coding and Decoding: Turbo codes”, in Proc. 1993 Int. Conf. on Communications (ICC’93), Washington DC, USA,, pp. 34, June 2001.

  149. Gitlin R.D., Saltz J., Winter J.H. (1994) “The Impact of Antenna Diversity on the Capacity of Wireless Communication systems”. IEEE Trans. Commun. 42(4): 1740–1751

    Article  Google Scholar 

  150. Saltz and J. H. Winter, “Effects of Fading Correlation on Adaptive Arrays in Digital Mobile Radio”, IEEE Transactions on Vehicular Technology, Vol. 43, No. 4, pp. 1049–1057, 1994. Paper_reconfigurable_antenna_ Revised_kluwer_final.tex; 2/07/2006; 19:13; pp. 27–28.

  151. N. Kong, “Space-Time Multistage Parallel Interference Cancellation (MPIC) for CDMA”, in Vehicular Technology Conference, pp. 2826–2833, 2000.

  152. G. Foschini and M. Gans, “On Limits of Wireless Communication in a Fading Environmentwhen using Multiple Antennas", in Wireless Personal Communication, Kluver Academic Publishers, pp. 311–335, 1998.

  153. W. Rhee, W. Yu, and J. Cioffi, “Utilizing Multiuser Diversity for Multiple Antenna Systems”, in Wireless Communication and Networking Conference, Vol. 1, pp. 420–425, 2000.

  154. W. Rhee and J. Cioffi, “Ergodic Capacity of Multi-Antenna Gaussian Multiple-Access Channels”, in Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, Vol. 1, pp. 507–512, 2001.

  155. S. Morosi, E. Del Re, R. Fantacci, and A. Bernacchioni,“Improved Iterative Parallel Iterference Cancellation Receiver for DS-CDMA 3G Systems", in Proc. of the IEEE Wireless Communications and Networking Conference (WCNC 2003), Vol. 2, pp. 877–882, March 2003.

  156. S. Morosi, E. Del Re, and O. Gremigni, “Turbo PIC and Antenna Diversity for DS-CDMA Communications in Wireless Block Fading Channel”. in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., Lissabon, Portugal, Sept. 2004.

  157. B. Cho, D. Choi, S. Lee, and Y. Oh, “Performance of the Improved PIC Receiver for DS-CDMA over Rayleigh Fading Channels", in Proc. of ISSSTA, pp. 45–49, Sept. 2000.

  158. P. Leppänen, J. Reinilä, A. Nykänen, V. Tapio, M. Isohookana, J. Pyhtilä, T. Kokkonen, and J. Sillanpää “Software Radio - An Alternative for the Future in Wireless Personal and Multimedia Communication”, Personal Wireless Communication, pp. 364–368, 1999.

  159. W. H. W. Tuttlebee, “Software Defined Radio Enabling Technologies”, Wiley, 2002.

  160. Mitola III, “The Software Radio Architecture”, IEEE Communications Magazine, pp. 26–38, March 1996.

  161. J. E. Gunn, K. S. Barron, and W. Ruczczyk “A Low-Power DSP Core-Based Software Radio Architecture”, IEEE Journal on Selected Areas in Communications, Vol. 17, No. 4, April 1999.

  162. E. Del Re, “Software Radio Technologies and Services”, Springer, September 2000.

  163. Weidong and Y. Yan “Software Radio: Technology & Implementation”, ICCT ’98, October 1998.

  164. W. H. W. Tuttlebee, “Software-Defined radio: Facets of a Developing Technology”, IEEE Wireless Communications, vol. 12 No. 6, pp. 245–248, December 2000.

  165. J. Hoffmeyer, Il-Pyung Park, M. Majmundar, and S. Blust “Radio Software Download for Commercial Wireless Reconfigurable Devices”, pp: S26–S32.

  166. Bertini, E. Del Re, and L. S. Ronga, “RADL-C: an Embedded Compiler for Remote Physical Layer Reconfiguration”, Eighth International Workshop on Signal Processing for Space Communications, Sept. 2003, Catania.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Morosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Re, E., Morosi, S., Marabissi, D. et al. Reconfigurable Antenna for Future Wireless Communication Systems. Wireless Pers Commun 42, 405–430 (2007). https://doi.org/10.1007/s11277-006-9185-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-006-9185-8

Keywords

Navigation