Skip to main content
Log in

Performance Enhancement of TCP in Dynamic Bandwidth Wired and Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme that dynamically adjusts the slow start threshold (ssthresh) of TCP. The ssthresh estimation is used to set an appropriate ssthresh. A good ssthresh would improve the transmission performance of TCP. For the congestion avoidance state, we present a mechanism that probes the available bandwidth. We adjust the congestion window size (cwnd) appropriately by observing the round trip time (RTT) and reset the ssthresh after quick retransmission or timeout using the ssthresh estimation. Then the TCP sender can enhance its performance by using the ssthresh estimation and the observed RTT. Our scheme defines what is considered an efficient transmission rate. It achieves better utilization than other TCP versions. Simulation results show that our scheme effectively improves TCP performance. For example, when the average bottleneck bandwidth is close to 30% of the whole network bandwidth, our scheme improves TCP performance by at least 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrishnan H., Seshan S. and Katz R.H. (1995). Improving reliable transport and handoff performance in cellular wireless networks. Wireless Networks 1(4): 469–481

    Article  Google Scholar 

  2. Balakrishnan, H., Seshan, S., & Katz, R. H. (1995). Improving TCP/IP performance over wireless networks. In Proceedings of the ACM MOBICOM, (pp. 2–11), November 1995.

  3. Bakre, A., & Badrinath, B. R. (1995). I-TCP: Indirect TCP for mobile hosts. In Proceedings of the 15th International Conference Distributed Computing Systems (ICDCS), May 1995.

  4. Braden, R. T. (1989). Requirements for internet hosts-communication layers. In RFC 1122, October 1989.

  5. Brakmo L.S. and Peterson L.L. (1995). TCP Vegas: End-to-end congestion avoidance on a global internet. IEEE Journal on Selected Areas in Communications 13(8): 1465–1480

    Article  Google Scholar 

  6. Brown K. and Singh S. (1997). M-TCP: TCP for mobile cellular networks. ACM SIGCOMM Computer Communication Review 27(5): 19–43

    Article  Google Scholar 

  7. Capone A., Fratta L. and Martignon F. (2004). Bandwidth estimation schemes for TCP over wireless networks. IEEE Transactions on Mobile Computing 3(2): 129–143

    Article  Google Scholar 

  8. Casetti C., Gerla M., Mascolo S., Sanadidi M.Y. and Wang R. (2002). TCP westwood: End-to-end congestion control for wired/wireless networks. Wireless Networks 8(5): 467–479

    Article  MATH  Google Scholar 

  9. Da Costa G.M.T. and Sirisena H.R. (2003). Freeze TCP with timestamps for fast packet loss recovery after disconnections. Computer Communications 26(15): 1792–1799

    Article  Google Scholar 

  10. Desimon, A., Chuah, M. C., & Yue, O. (1993). Throughput performance of transport-layer protocols over wireless LANs. In Proceedings of the IEEE GLOBECOM (Vol. 1), (pp. 542–549), December 1993.

  11. Elaarag H. (2002). Improving TCP performance over mobile networks. ACM Computing Surveys 34(3): 357–374

    Article  Google Scholar 

  12. Fall, K., & Floyd, S. (1996). Simulation-based comparisons of Tahoe, Reno, and SACK TCP. In Proceedings of the ACM Computer Communications Review, pp. 5–21, July 1996.

  13. Fu Z., Luo H. and Zerfos P. (2005). The impact of multihop wireless channel on TCP performance. IEEE Transactions on Mobile Computing 4(2): 209–221

    Article  Google Scholar 

  14. Izumikawa, H., Yamaguchi, I., & Katto, J. (2004). An efficient TCP with explicit handover notification for mobile networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (Vol. 2), (pp. 647–652), March 2004.

  15. Mascolo, S., Casetti, C., Gerla, M., & Sanadidi, M. (2001). TCP westwood: Bandwidth estimation for enhanced transport over wireless links. In Proceedings of the ACM MOBICOM (pp. 287–297), July 2001.

  16. Mo, J., Anantharam, V., La, R. J., & Walrand, J. (1999). Analysis and comparison of TCP Reno and Vegas. In Proceedings of the IEEE INFOCOM (Vol. 3), (pp. 1556–1563), March 1999.

  17. Nanda S., Ejzak R. and Doshi B.T. (1994). A retransmission scheme for circuit-mode data on wireless links. IEEE Journal on Selected Areas in Communications 12(8): 1338–1352

    Article  Google Scholar 

  18. Postel, J. B. (1981). Transmission control protocol. In RFC 793, September 1981.

  19. Sinha, P., Venkitaraman, N., Sivakumar, R., & Bhargavan, V. (1999). WTCP: A reliable transport protocol for wireless wide-area networks. In Proceedings of the ACM MOBICOM (pp. 231–241).

  20. Stevens, W. R. (1994). TCP/IP Illustrated (Vol. 1). Addison-Wesley.

  21. Tsaoussidis V. and Matta I. (2002). Open issues on TCP for mobile computing. Wireless Communication and Mobile Computing 2(1): 3–20

    Article  Google Scholar 

  22. Wang, K.-Y., & Tripathi, S.-K. (1998). Mobile-end transport protocol: An alternative to TCP/IP over wireless links. In Proceedings of the IEEE INFOCOM (Vol. 3), (pp. 1046–1053), March 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neng-Chung Wang or Yung-Fa Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, NC., Chen, JS., Huang, YF. et al. Performance Enhancement of TCP in Dynamic Bandwidth Wired and Wireless Networks. Wireless Pers Commun 47, 399–415 (2008). https://doi.org/10.1007/s11277-008-9489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9489-y

Keywords

Navigation