Skip to main content
Log in

Searchback Algorithms for TOA Estimation in Non-coherent Low-rate IR-UWB Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Non-coherent ultra-wideband (UWB) receivers offer an attractive low-complexity solution to ranging with UWB radios. They use a simple receiver architecture that can operate at very low sampling rates compared to the Nyquist rate. In this paper, time-of-arrival (TOA) estimation performances of two different searchback algorithms for non-coherent impulse radio UWB systems are analyzed: jump back and search forward (JBSF) and serial backward search (SBS). Average ranging errors for both algorithms are formulated using noise-based ranging thresholds and at sub-Nyquist sampling rates. For JBSF, a lower bound on the average ranging error is obtained using an error-minimizing threshold. Also, a semi-analytic technique for the selection of the searchback window length is presented. For SBS, noise-based threshold selection for both single-cluster and multi-cluster channels are introduced. Computer simulations in IEEE 802.15.4a channels provide insights on the selection of some of the critical parameters for accurate ranging. The simulation results show that JBSF typically performs better than SBS if the inter-cluster delay parameter (K) is not selected appropriately for SBS. In both cases, it is shown that even at sampling rates much smaller than the Nyquist rate, ranging accuracies on the order of 33 cm can be obtained using a non-coherent UWB receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guvenc, I., Sahinoglu, Z., Molisch, A. F., & Orlik, P. (2005). Non-coherent TOA estimation in IR-UWB systems with different signal waveforms. In Proceedings IEEE International Workshop on Ultrawideband Networks (UWBNETS), Boston, MA, October 2005, pp. 245–251.

  2. Guvenc, I., & Arslan, H. (2006). Comparison of two searchback schemes for non-coherent TOA estimation in IR-UWB systems. In Proceedings of IEEE Sarnoff Symponism, Princeton, NJ, Mar. 2006.

  3. Gezici, S., Sahinoglu, Z., Kobayashi, H., & Poor, H. V. (2005). Ultra Wideband Geolocation. Wiley in Ultrawideband Wireless Communications.

  4. Coppens F. (1985). First arrival picking on common-offset trace collections for automatic estimation of static corrections. Geophysical Prospecting, 33(8): 1212–1231

    Article  Google Scholar 

  5. Jativa, R. E., & Vidal, J. (2002). Coarse first arriving path detection for subscriber location in mobile communication systems. In Proceedings European Signal Processing Conference (EUSIPCO), Toulouse, France, Sept. 2002, pp. 2733–2736.

  6. Vidal, J., & Jativa, R. E. (2002). First arriving path detection for subscriber location in mobile communication systems. In Proceedings of IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 3, Orlando, FL, May 2002, pp. 2733–2736.

  7. Vidal, J., Najar, M., & Jativa, R. E. (2002). High resolution time-of-arrival detection for wireless positioning systems. In Proceedings of IEEE Vehicular Technology Conference (VTC), Vol. 4, Vancouver, Canada, Sept. 2002, pp. 2283–2287.

  8. van de Beek, J. J., Brjesson, P. O., Eriksson, H., Gustavsson, J.-O., & Olsson, L. (1993). MMSE estimation of arrival time with application to ultrasonic signals,” Research Report, Apr. 1993. [Online]. Available: citeseer.ist.psu.edu/vandebeek93mmse.html.

  9. Manickam T.G., Vaccaro R.J. and Tufts D.W. (1975). A least-squares algorithm for multipath time-delay estimation. IEEE Transaction Signal Processing, 42(11): 3229–3233

    Article  Google Scholar 

  10. Saarnisaari, H. (1996). ML time delay estimation in a multipath channel. In Proceedings IEEE Int. Sympernational/Osium. Spread Spectrum Techniques and Applications, Mainz, Germany, Sept. 1996, pp. 1007–1001.

  11. Chazan D., Zakai M. and Ziv J. (1994). Improved lower bounds on signal parameter estimation. IEEE Transaction Information Theory, 21(1): 90–93

    Article  MathSciNet  Google Scholar 

  12. Weiss A.J. and Weinstein E. (1983). Fundamental limitations in passive time delay estimation – part I: Narrow-band systems. IEEE Transaction on Acoustics, Speech, Signal Processing, 31(2): 472–486

    Article  Google Scholar 

  13. Weinstein E. and Weiss A.J. (1984). Fundamental limitations in passive time delay estimation – part II: Wide-band systems. IEEE Transaction Acoustics, Speech, Signal Processing, 32(5): 1064–1078

    Article  Google Scholar 

  14. Weinstein E. and Weiss A.J. (1988). A general class of lower bounds in parameter estimation. IEEE Transaction Information Theory, 34(2): 338–342

    Article  MATH  MathSciNet  Google Scholar 

  15. Zeira A. and Schultheiss P.M. (1993). Realizable lower bounds for time delay estimation. IEEE Trans. Signal Processing, 41(11): 3102–3113

    Article  Google Scholar 

  16. Zeira A. and Schultheiss P.M. (1994). Realizable lower bounds for time delay estimation: Part 2 – threshold phenomena. IEEE Transaction Signal Processing, 32(5): 1001–1007

    Article  Google Scholar 

  17. Bell K.L., Steinberg Y., Ephraim Y. and Trees H.L.V. (1997). Extended Ziv-Zakai lower bound for vector parameter estimation. IEEE Transaction Information Theory, 43(2): 624–637

    Article  MATH  Google Scholar 

  18. Zhang, J., Kennedy, R. A., & Abhayapala, T. D. (2004). Cramer-Rao lower bounds for the time delay estimation of UWB signals. In Proceedings IEEE International Conference Communications (ICC), Paris, France, May 2004, pp. 3424–3428.

  19. Dardari, D., Chong, C. C., & Win, M. Z. (2006). Improved lower bounds on time-of-arrival estimation error in realistic UWB channels. In Proceedings IEEE International Conference on Ultrawideband (ICUWB), Weltham, MA, Sept. 2006, pp. 531–537.

  20. Lee J.-Y. and Scholtz R.A. (2002). Ranging in a dense multipath environment using an UWB radio link. IEEE Journal of Selected Areas Communications, 20(9): 1677–1683

    Article  Google Scholar 

  21. Medina, E., & Najar, M. (2000). High resolution location in Ultra-wideband communications systems. In Proceedings Second International Workshop on Networking with Ultra Wide Band, Rome, Italy, July 2005.

  22. Scholtz, R. A., & Lee, J. Y. (2002). Problems in modeling UWB channels. In Proceedings of IEEE Asilomar Conference Signals, Systems Computers, Vol. 1, Monterey, CA, Nov. 2002, pp. 706–711.

  23. Guvenc, I., & Sahinoglu, Z. (2005). Threshold-based TOA estimation for impulse radio UWB systems. In Proceedings of IEEE International Conference UWB (ICU), Zurich, Switzerland, Sept. 2005, pp. 420–425.

  24. Dardari, D., Chong, C. C., & Win, M. Z. (2006). Analysis of threshold-based TOA estimator in UWB channels. In Proceedings European Signal Processing Conference (EUSIPCO), Florence, Italy, Sept. 2006.

  25. Guvenc I. and Sahinoglu Z. (2005). Threshold selection for UWB TOA estimation based on kurtosis analysis. IEEE Communication Letters, 9(12): 1025–1027

    Article  Google Scholar 

  26. Humblet P.A. and Azizoglu M. (1991). On the bit error rate of lightwave systems with optical amplifiers. Journal of Lightwave Technology, 9(11): 1576–1582

    Article  Google Scholar 

  27. Guvenc I., Sahinoglu Z. and Orlik P. (2006). TOA estimation for IR-UWB systems with different transceiver types. IEEE Transactions on Microwave Theory and Techniques (Special Issue on Ultrawideband), 54(4): 1876–1886

    Article  Google Scholar 

  28. Trees H.L.V. (2001). Detection, Estimation and Modulation Theory: Part I, 2nd edn. Wiley, New York, NY

    Google Scholar 

  29. Nau, R. F. (2005). Statistical forecasting (course notes), May 2005. [Online]. Available: http://www.duke.edu/>>rnau/compare.htm.

  30. Molisch, A. F., Balakrishnan, K., Chong, C.-C., Emami, S., Fort, A., Karedal, J., Kunisch, J., Schantz, H., Schuster, U., & Siwiak, K. (2005). IEEE 802.15.4a channel model - final report, tech. rep. doc: IEEE 802.15-04-0662-02-004a. [Online]. Available: http://www.ieee802.org/15/pub/TG4a.html.

  31. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., Karedal, J., Kunisch, J., Schantz, H., Schuster, U., & Siwiak, K. (2005). A comprehensive model for ultrawideband propagation channels. In Proceedings IEEE Global Telecommunication Conference (GLOBECOM), St. Louis, MO, pp. 3648–3653, Dec. 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Guvenc.

Additional information

This work was presented in part at IEEE International Workshop on Ultrawideband Networks (UWBNets), 2005 [1], and in IEEE Sarnoff Symposium, 2006 [2]. This work was done while Ismail Guvenc was at MERL and USF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guvenc, I., Sahinoglu, Z., Orlik, P. et al. Searchback Algorithms for TOA Estimation in Non-coherent Low-rate IR-UWB Systems. Wireless Pers Commun 48, 585–603 (2009). https://doi.org/10.1007/s11277-008-9549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9549-3

Keywords

Navigation