Skip to main content
Log in

Multiuser MIMO OFDM Based TDD/TDMA for Next Generation Wireless Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multiple-input multiple-output (MIMO) wireless technology in combination with orthogonal frequency division multiplexing (MIMO OFDM) is an attractive air-interface solution for next-generation wireless local area networks (WLANs), wireless metropolitan area networks (WMANs), and fourth-generation mobile cellular wireless systems. In this paper, one multiuser MIMO OFDM systems with TDD/TDMA was proposed for next-generation wireless mobile communications, i.e., TDD/TDMA 4G, which can avoid or alleviate the specific limitations of existing techniques designed for multiuser MIMO OFDM systems in broadband wireless mobile channel scenarios, i.e., bad performance and extreme complexity of multiuser detectors for rank-deficient multiuser MIMO OFDM systems with CDMA as access modes, extreme challenges of spatial MIMO channel estimators in rank-deficient MIMO OFDM systems, and exponential growth complexity of optimal sub-carrier allocations for OFDMA-based MIMO OFDM systems. Furthermore, inspired from the Steiner channel estimation method in multi-user CDMA uplink wireless channels, we proposed a new design scheme of training sequence in time domain to conduct channel estimation. Training sequences of different transmit antennas can be simply obtained by truncating the circular extension of one basic training sequence, and the pilot matrix assembled by these training sequences is one circular matrix with good reversibility. A novel eigenmode transmission was also given in this paper, and data symbols encoded by space–time codes can be steered to these eigenmodes similar to MIMO wireless communication systems with single-carrier transmission. At the same time,, an improved water-filling scheme was also described for determining the optimal transmit powers for orthogonal eigenmodes. The classical water-filling strategy is firstly adopted to determine the optimal power allocation and correspondent bit numbers for every eigenmode, followed by a residual power reallocation to further determine the additional bit numbers carried by every eigenmode. Compared with classical water-filling schemes, it can also obtain larger throughputs via residual power allocation. At last, three typical implementation schemes of multiuser MIMO OFDM with TDMA, CDMA and OFDMA, i.e., TDD/TDMA 4G, VSF-OFCDM and FuTURE B3G TDD, were tested by numerical simulations. Results indicated that the proposed multiuser MIMO OFDM system schemes with TDD/TDMA, i.e., TDD/TDMA 4G, can achieve comparable system performance and throughputs with low complexity and radio resource overhead to that of DoCoMo MIMO VSF-OFCDM and FuTURE B3G TDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanzo L., Münster M., Choi B.J., Keller T. (2003) OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting. IEEE Press/Wiley, Piscataway, NJ

    Google Scholar 

  2. Holsinger, J. L. (1964). Digital communication over fixed time-continuous channels with memory—with special application to telephone channels. Cambridge, MA: MIT-Lincoln Lab, Tech. Rep. 366.

  3. Cioffi, J. M. (1991). A multicarrier primer, ANSI T1E1.4/91-157.

  4. ANSI Committee T1-Telecommunications. (1994). A technical report on high-bit-rate digital subscriber lines (HDSL). Tech. Rep. 28.

  5. ANSI Committee T1-Telecommunications. (1998).Very-high-speed digital subscriber lines: System requirements, ANSI T1E1.4 VDSL SR: 98-043R5.

  6. ETSI-TM. (1998). Access transmission systems on metallic access cables; very high speed digital subscriber line (VDSL); part 1: Functional requirements, ETSI TS 101 270-1 V1.1.2.

  7. ETSI ETS. (1995). Digital Audio Broadcasting (DAB): DAB to mobile, portable and fixed receivers. ETSI ETS 300 401 ed.1.

  8. ETSI ETS. (1997). Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for Digital Terrestrial Television (DVB-T), ETSI ETS 300 744 ed.1.

  9. ETSI ETS. (2004). Digital Video Broadcasting (DVB): Transmission System for Handheld Terminals (DVB-H). ETSI EN 302 304 V1.1.1.

  10. ETSI ETS. (1996). Radio Equipment and Systems (RES): High Performance Radio Local Area Network (HIPERLAN) Type 1; Functional Specification. ETSI ETS 300 652 ed.1.

  11. ETSI ETS. (1998). Broadband Radio Access Networks (BRAN): Inventory of Broadband Radio Technologies and Techniques, ETSI TR 101 173 V1.1.1.

  12. IEEE. (1999). IEEE Standard 802.11a: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band.

  13. IEEE. (2003). IEEE Standard 802.11g: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

  14. IEEE. (2004). IEEE Candidate Standard 802.11n: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

  15. IEEE. (2004). IEEE Standard 802.16: Air Interface for Fixed Broadband Wireless Access Systems.

  16. Koffman I., Roman V. (2002) Broadband wireless access solutions based on OFDM access in IEEE 802.16. IEEE Communications Magazine 40(4): 96–103. doi:10.1109/35.995857

    Article  Google Scholar 

  17. May T., Rohling H., Engels V. (1998) Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals. IEEE Transactions on Communications 46(2): 182–190. doi:10.1109/26.659477

    Article  Google Scholar 

  18. Peled, A., & Ruiz, A. (1980). Frequency domain data transmission using reduced computational complexity algorithms. In IEEE 1980 International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’80), Denver, CO, Apr.1980.

  19. Zhou Y., Ng T.-S., Wang J., Higuchi K., Sawahashi M. (2008) OFCDM: A promising broadband wireless access technique. IEEE Communications Magazine 46(3): 39–49. doi:10.1109/MCOM.2008.4463770

    Google Scholar 

  20. Zhou, Y. (2004). Effect of fast fading on hybrid detection in VSF-OFCDM systems. In 2004 IEEE International Conference on Communications, Paris, France, June 2004. doi:10.1109/ICC.2004.1313155.

  21. Kishiyama, Y., Maeda, N., Higuchi, K., Atarashi, H., & Sawahashi, M. (2003). Experiments on throughput performance above 100-Mbps in forward link for VSF-OFCDM broadband wireless access. In IEEE 58th vehicular technology conference (VTC 2003-Fall), Orlando, Florida, USA, October 2003.doi:10.1109/VETECF.2003.1285348.

  22. Raleigh G.G., Cioffi J.M. (1998) Spatio-temporal coding for wireless communication. IEEE Transactions on Communications 46(3): 357–366. doi:10.1109/26.662641

    Article  Google Scholar 

  23. Hoadley, J. (2005). Building future networks with MIMO and OFDM. Telephonyonline.com. Available at: http://telephonyonline.com/wireless/technology/mimo_ofdm_091905/.

  24. Airgo Networks. Available at: http://www.airgonetworks.com/.

  25. Bölcskei H., Gesbert D., Paulraj A.J. (2002) On the capacity of OFDM-based spatial multiplexing systems. IEEE Transactions on Communications 50(2): 225–234. doi:10.1109/26.983319

    Article  Google Scholar 

  26. Blum R.S., Li Y., Winters J.H., Yan Q. (2001) Improved space–time coding for MIMO-OFDM wireless communications. IEEE Transactions on Communications 49(11): 1873–1878. doi:10.1109/26.966049

    Article  Google Scholar 

  27. Moon J.H., You Y.H., Jeon W.G., Kwon K.W., Song H.K. (2003) Peak-to-average power control for multiple-antenna HIPERLAN/2 and IEEE802.11a systems. IEEE Transactions on Consumer Electronics 49(4): 1078–1083. doi:10.1109/TCE.2003.1261199

    Article  Google Scholar 

  28. Li Y. (2002) Simplified channel estimation for OFDM systems with multiple transmit antennas. IEEE Transactions on Wireless Communications 1(1): 67–75. doi:10.1109/7693.975446

    Article  Google Scholar 

  29. Li Y., Winters J.H., Sollenberger N.R. (2002) MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications, 50(9): 1471–1477. doi:10.1109/TCOMM.2002.802566

    Article  Google Scholar 

  30. Paulraj A.J., Gore D.A., Nabar R.U., Bölcskei H. (2004) An overview of MIMO communicationsVA key to gigabit wireless. Proceedings of the IEEE 92(2): 198–218. doi:10.1109/JPROC.2003.821915

    Article  Google Scholar 

  31. Dubuc C., Starks D., Creasy T., Hou Y. (2004) A MIMO-OFDM prototype for next-generation wireless WANs. IEEE Communications Magazine 42(12): 82–87. doi:10.1109/MCOM.2004.1367559

    Article  Google Scholar 

  32. Xia B., Wang J., Sawahashi M. (2005) Performance comparison of optimum and MMSE receivers with imperfect channel estimation for VSF-OFCDM systems. IEEE Transactions on Wireless Communications 4(6): 3051–3062. doi:10.1109/TWC.2005.857998

    Article  Google Scholar 

  33. Kishiyama, Y., Maeda, N., Higuchi, K., et al. (2004). Transmission performance analysis of VSF-OFCDM broadband packet wireless access based on field experiments in 100-MHz forward link. In 2004 IEEE 60th Vehicular Technology Conference (VTC2004-Fall), Los Angeles, CA, September 2004. doi:10.1109/VETECF.2004.1404680.

  34. Quek, T. Q. S., Maeda, N., Atarashi, H., & Sawahashi, M. (2004). Analysis on tradeoff between frequency diversity and inter-code interference considering fading correlation in forward link for VSF-OFCDM wireless access. In 2004 IEEE 60th Vehicular Technology Conference (VTC2004-Fall), Los Angeles, CA, September 2004. doi:10.1109/VETECF.2004.1400146.

  35. Zhang P., Tao X., Zhang J. et al (2005) A vision from the future: Beyond 3G TDD. IEEE Communications Magazine 43(1): 38–44. doi:10.1109/MCOM.2005.1381873

    Article  MathSciNet  Google Scholar 

  36. Liu, G., Liu, X., Tian, W., et al. (2005). Capacities of two uplink speech schemes for FuTURE B3G TDD system in multi-cell scenario. In 2005 IEEE 62th Vehicular Technology Conference (VTC2005-Fall), Dallas, Texas, USA, September 2005. doi:10.1109/VETECF.2005.1558189.

  37. Yin C., Zhao X., Hou X. et al (2005) A simulation study on channel estimation for MIMO-OFDM based beyond 3G mobile systems. The Journal of China universities of Posts and Telecommunica 12(3): 7–11. doi:cnki:ISSN:1005-8885.0.2005-03-003

    Google Scholar 

  38. Tao, X., Xu, J., Xu, X., et al. (2005). Group Cell FuTURE B3G TDD System. In IEEE 2005 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2005), Berlin, Germany, September 2005. doi:10.1109/PIMRC.2005.1651585.

  39. Zheng K., Huang L., Wang W., Yang G. (2005) TD-CDM-OFDM: Evolution of TD-SCDMA toward 4G. IEEE Communications Magazine 43(1): 45–52. doi:10.1109/MCOM.2005.1381874

    Article  Google Scholar 

  40. Yang Y., Li F. (2006) Evolution of TD-SCDMA toward TD-CDM-OFDM. Communications World Weekly 6(3): 35–36. doi:cnki:ISSN:1009-1564.0.2006-03-028

    Google Scholar 

  41. Yang Y., Li F. (2006) TD-SCDMA Column TD-CDM-OFDM: The next generation TD-SCDMA. Modern Science & Technology of Telecommunications 28(3): 51–53. doi:cnki:ISSN:1002-5316.0.2006-03-019 69

    Google Scholar 

  42. Verdu S. (1998) Multiuser detection. Cambridge University Press, Cambridge, U.K.

    MATH  Google Scholar 

  43. Fincke U., Pohst M. (1985) Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation 44(170): 463–471

    Article  MATH  MathSciNet  Google Scholar 

  44. Viterbo E., Boutros J. (1999) A universal lattice code decoder for fading channels. IEEE Transactions on Information Theory 45(5): 1639–1642. doi:10.1109/18.771234

    Article  MATH  MathSciNet  Google Scholar 

  45. Akhtman, J., & Hanzo, L. (2005). Reduced-complexity maximum-likelihood detection in multiple-antenna-aided multicarrier systems. In 2005 5th International Workshop on Multi-Carrier Spread Spectrum Communications, Oberpfaffenhofen, Germany, September 2005.

  46. Alias M.Y., Samingan A.K., Chen S., Hanzo L. (2003) Multiple antenna aided OFDM employing minimum bit error rate multiuser detection. Electronics Letters 39(24): 1769–1770. doi:10.1049/el:20031105

    Article  Google Scholar 

  47. Kim K.J., Yue J., Iltis R.A., Gibson J.D. (2005) A QRD-M/Kalman filter-based detection and channel estimation algorithm for MIMO-OFDM systems. IEEE Transactions on Wireless Communications 4(2): 710–721. doi:10.1109/TWC.2004.842951

    Article  Google Scholar 

  48. Necker M.C., Stüber G.L. (2004) Totally blind channel estimation for OFDM on fast varying mobile radio channels. IEEE Transactions on Wireless Communications 3(5): 1514–1525. doi:10.1109/TWC.2004.833508

    Article  Google Scholar 

  49. Li Y., Seshadri N., Ariyavisitakul S. (1999) Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE Journal on Selected Areas in Communications 17(3): 461–471. doi:10.1109/49.753731

    Article  Google Scholar 

  50. Minn H., Kim D.I., Bhargava V.K. (2002) A reduced complexity channel estimation for OFDM systems with transmit diversity in mobile wireless channels. IEEE Transactions on Communications 50(5): 799–807. doi:10.1109/TCOMM.2002.1006561

    Article  Google Scholar 

  51. Thoen S., Deneire L., Perre L.V.D., Engels M., Man H.D. (2003) Constrained least squares detector for OFDM/SDMA-based wireless networks. IEEE Transactions on Wireless Communications 2(1): 129–140. doi:10.1109/TWC.2002.806377

    Article  Google Scholar 

  52. Kim K.J., Yue J., Iltis R.A., Gibson J.D. (2005) A QRD-M/Kalman filter-based detection and channel estimation algorithm for MIMO-OFDM systems. IEEE Transactions on Wireless Communications 4(2): 710–721. doi:10.1109/TWC.2004.842951

    Article  Google Scholar 

  53. Zeng Y., Ng T.S. (2004) A semi-blind channel estimation method for multiuser multiantenna OFDM systems. IEEE Transactions on Signal Processing 52(5): 1419–1429. doi:10.1109/TSP.2004.826183

    Article  MathSciNet  Google Scholar 

  54. Wang Z., Han Z., Liu K.J.R. (2005) A MIMO-OFDM channel estimation approach using time of arrivals. IEEE Transactions on Wireless Communications 4(3): 1207–1213. doi:10.1109/TWC.2005.847112

    Article  Google Scholar 

  55. Cui, T., & Tellambura, C. (2004). Joint channel estimation and data detection for OFDM systems via sphere decoding. In IEEE 2004 Global Telecommunications Conference (GLOBECOM ’04), Dallas, TX, November 29–December 3, 2004. doi:10.1109/GLOCOM.2004.1379051

  56. IEEE Std. 802.16. (2001). IEEE Standard for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems.

  57. Tse, D. (1997). Optimal power allocation over parallel Gaussian broadcast channels. In 1997 IEEE International Symposium on Information Theory, Ulm Germany, June 1997. doi:10.1109/ISIT.1997.612942.

  58. Knopp, R., & Humblet, P. A. (1995). Information capacity and power control in single-cell multiuser communications. In 1995 IEEE International Conference on Communications, Seattle, WA, June 1995. doi:10.1109/ICC.1995.525188.

  59. Pottie G.J. (1995) System design choices in personal communications. IEEE Personal Communications 2(5): 50–67. doi:10.1109/98.468362

    Article  Google Scholar 

  60. Kivanc D., Li G., Liu H. (2003) Computationally efficient bandwidth allocation and power control for OFDMA. IEEE Transactions on Wireless Communications 2(6): 1150–1158. doi:10.1109/TWC.2003.819016

    Article  Google Scholar 

  61. User Equipment (UE) radio transmission and reception (TDD), 3GPP TS 25.102.720. Available at: http://www.3gpp.org/ftp/Specs/archive/25_series/25.102/25102-720.zip,2006-7-6.

  62. Rappaport T.S. (2002) Wireless communications principles and practice (2nd ed). Upper Saddle River, NJ, Prentice Hall PTR

    Google Scholar 

  63. OFDM System Design Example:Indoor Wireless LAN. Available at http://ee.eng.usf.edu/gradcourses/EE-seminar/presentations/nezami-2.pdf,2006-8-8.

  64. Channel models for fixed wireless applications. Available at: http://www.ieee802.org/16/tga/docs/80216a-03_01.pdf,2006/4/25.

  65. Method and Principle of Uplink Synchronization. Available at: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_05/Docs/Pdf/r1-99624.pdf,2006/5/18.

  66. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;Physical channels and mapping of transport channels onto physical channels (TDD) (Release 7), 3GPP TS 25.221 V7.0.0 (2006-03).

  67. Schmidl T.M., Cox D.C. (1997) Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications 45(12): 1613–1621. doi:10.1109/26.650240

    Article  Google Scholar 

  68. Ogawa, Y., Nishio, K., Nishimura, T., & Ohgane, T. (2003). A MIMO-OFDM system for high-speed transmission. In 2003 IEEE 58th Vehicular Technology Conference (VTC 2003-Fall), Orlando, Florida, October 2003.

  69. Steiner B., Jung P. (1994) Optimum and suboptimum channel estimation for uplink of CDMA mobile radio systems with joint detection. European Transacations on Telecommunication Related Technologies 5(1): 39–49

    Google Scholar 

  70. Steiner B., Baier P.W. (1993) Low cost channel estimation in the uplink receiver of CDMA mobile radio systems. Frequenz 47(6): 292–298

    Google Scholar 

  71. Proakis J.G. (1995) Digital communications (3rd ed). McGraw-Hill, New York

    Google Scholar 

  72. Stuber G.L., Barry J.R., McLaughlin S.W. et al (2004) Broadband MIMO-OFDM wireless communications. IEEE Proceedings 92(2): 271–294. doi:10.1109/JPROC.2003.821912

    Article  Google Scholar 

  73. Yang, S., & Zhao, Y. (2004). Channel estimation method for 802.11a WLAN with multiple-antenna. In 10th Asia-Pacific Conference on Communications and 5th International Symposium on Multi-Dimensional Mobile Communications, Pekino University, Beijing, China, 29 August–1 September 2004.

  74. Ogawa, Y., Nishio, K., Nishimura, T., et al. (2004). Channel and frequency offset estimation for a MIMO-OFDM system. In 2004 IEEE 60th Vehicular Technology Conference (VTC2004-Fall), Los Angeles, CA, September 2004. doi:10.1109/VETECF.2004.1400278.

  75. Li, Y., & Wang, H. (2003). Channel estimation for MIMO-OFDM wireless communications. In IEEE 14th Proceedings on Personal, Indoor and Mobile Radio Communications (PIMRC 2003), Beijing, China, September 2003. doi:10.1109/PIMRC.2003.1259276.

  76. Telatar E. (1999) Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 10(6): 585–595

    Article  Google Scholar 

  77. Nanda S., Walton R., Ketchum J. et al (2005) A high-performance MIMO OFDM wireless LAN. IEEE Communications Magazine 43(2): 101–109. doi:10.1109/MCOM.2005.1391508

    Article  Google Scholar 

  78. Willink T.J. (2005) MIMO OFDM for broadband fixed wireless access. IEE Proceedings Communications 152(1): 75–81. doi:10.1049/ip-com:20040969

    Article  Google Scholar 

  79. Stuber G.L., Barry J.R., McLaughlin S.W. et al (2004) Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE 92(2): 271–294. doi:10.1109/JPROC.2003.821912

    Article  Google Scholar 

  80. Ng, K.-W., Cheng, R. S., & Murch, R. D. (2002). Iterative bit & power allocation for V-BLAST based OFDM MIMO system in frequency selective fading channel. In 2002 IEEE Wireless Communications and Networking Conference (WCNC2002), Orlando,USA, March 2002. doi:10.1109/WCNC.2002.993505.

  81. Codreanu, M., Tujkovic, D., & Latva-aho, M. (2005). Adaptive MIMO-OFDM systems with channel state information at TX side. In 2005 IEEE International Conference on Communications (ICC 2005), Seoul, Korea, May 2005. doi:10.1109/ICC.2005.1494829.

  82. Lai, Q., Yin, J., Lin, F., & Yu, H. (2005). Performance of adaptive bit and power allocation MIMO-OFDM system based on greedy algorithm. In 2005 International Conference on Wireless Communications, Networking and Mobile Computing (WiMob’2005), Montreal, Canada, August, 2005. doi:10.1109/WCNM.2005.1543975.

  83. Diaz, J., Bar-Ness, Y., & Lee, Y. H. (2006). A new approach to joint AMC and power allocation for MIMO-OFDM. In 2006 International Conference on Internet and Web Applications and Services/Advanced International Conference on Telecommunications (AICT-ICIW ’06), Guadeloupe, French Caribbean, February 2006. doi:10.1109/AICT-ICIW.2006.19.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhaogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhaogan, L., Yuan, R., Taiyi, Z. et al. Multiuser MIMO OFDM Based TDD/TDMA for Next Generation Wireless Communication Systems. Wireless Pers Commun 52, 289–324 (2010). https://doi.org/10.1007/s11277-008-9649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9649-0

Keywords

Navigation