Skip to main content

Advertisement

Log in

Wireless Aspects of Telehealth

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Telehealth is the use of electronic information and communication technology to deliver health and medical information and services over large and small distances. Broadband wireless services available today, along with more powerful and convenient handheld devices, will enable a transformational change in health management and healthcare with the introduction of real-time monitoring and timely responses to a wide array of patient needs. Further, a network of low-cost sensors and wireless systems help in creating constantly vigilant and pervasive monitoring capability at home and at work. This paper addresses recent efforts in this growing field, including standards, system architectures, propagation models, and lower layer protocols for body area networks. The paper also suggests the use of cooperative transmission-based strategies for such wireless topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donoghue, J., & Herbert, J. (2006). Prole based sensor data acquisition in a ubiquitous medical environment. In Proceedings of 4th annual IEEE pervasive computing and communications workshops.

  2. http://www.vitelnet.com/.

  3. Large Scale Remote Monitoring, Medetel, Apr. 2007.

  4. East York Telehome Care Project, final report.

  5. Gao, T., et al. (2008). Wireless medical sensor networks in emergency response: Implementation and pilot results. Proceedings of the IEEE conference on technologies for homeland security, May 2008.

  6. Kumekawa, J. K. (2000). Emerging trends in telehealth. Business briefing: Next generation healthcare, pp. 62–64.

  7. Jovanov, E. (2005). Wireless technology and system integration in body area networks for m-Health Applications. In IEEE engineering in medicine and biology 27th annual conference.

  8. http://www.ieee802.org/15/pub/TG4.html. Downloaded Jan. 2009.

  9. http://www.ieee802.org/15/pub/TG4a.html. Downloaded Jan. 2009.

  10. http://www.ieee802.org/15/pub/TG6.html. Downloaded Jan. 2009.

  11. Baker S. D., Hoglund D. H. (2008) Medical-grade mission-critical wireless networks. IEEE Engineering in Medicine and Biology Magazine 27(2): 86–95

    Article  Google Scholar 

  12. http://wireless.fcc.gov/services/index.htm?job=about&id=wireless_medical_telemetry. Accessed on Jan. 4, 2008.

  13. U.S. Federal Communications Commission. 47-telecommunication. In Chapter 1, Part 95-personal radio sevices, Subpart Wireless Medical Telemetry Service (WMTS). http://edocket.access.gpo.gov/cfr_2007/octqtr/pdf/47cfr95.1103.pdf. Accessed on Jan. 4, 2008.

  14. http://wireless.fcc.gov/services/index.htm?job=service_bandplan&id=wireless_medical_telemetry. Accessed on Jan. 4, 2008.

  15. http://wireless.fcc.gov/services/index.htm?job=operations&id=wireless_medical_telemetry. Accessed Jan. 4, 2008.

  16. Gee, T. (2008). An assessment of wireless medical telemetry system (WMTS), wireless medical devices, Apr. 27. http://medicalconnectivity.com/2008/04/27/an-assessment-of-wireless-medical-telemetry-system-wmts/system-wmts/.

  17. Timmons, N., & Scanlon, W. (2004). Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. In Proceedings of the first annual IEEE communications society conference on Sensor and Ad Hoc Communications and Networks (SECON).

  18. Johansson, A. J. (2004). Wireless communication with medical implants: Antennas and propagation. Sweden: PhD Thesis Lund University.

  19. Alomainy, A., et al. (2006). Modelling and characterisation of radio propagation from implants at different frequencies. In Proceedings of the 9th European conference on wireless technology.

  20. Cabrera-Umpiérrez, M. F., et al. (2006). Communication platform for biosensor-based sleep management applications. In Proceedings of the 28th IEEE EMBS annual international conference, Aug. 30–Sep. 3, 2006.

  21. Brunelli, D., et al. (2006). Bio-feedback system for rehabilitation based on a wireless body area network. In Proceedings of the fourth annual IEEE international conference on Pervasive Computing and Communications Workshops (PERCOMW06).

  22. Schwiebert, L., Gupta, S., Auner, P., Abrams, G., Lezzi, R., & McAllister, P. (2002). A biomedical smart sensor for visually impaired. IEEE Sensors, Jun. 2002.

  23. Panescu D. (2006) MEMS in medicine and biology. IEEE Engineering in Medicine and Biology Magazine 25(5): 19–28

    Article  Google Scholar 

  24. http://www.dexcom.com/230-seven-system-tutorial.aspx.

  25. Fassbender, H., et al. (2008). Fully implantable blood pressure sensor for hypertonic patients. In IEEE SENSORS conference.

  26. http://www.minimed.com.

  27. Buchegger T. et al (2005) Ultra-wideband transceivers for cochlear implants. EURASIP Journal on Applied Signal Processing, 18: 3069–3075

    Google Scholar 

  28. Piccone, V., Piccone, J., Piccone, L., LeVeen, R., & Veen, E. (1986). Implantable epilepsy monitor apparatus. United States Patent 4566464.

  29. Hodgins D. et al (2008) Healthy aims: Developing new medical implants and diagnostic equipment. Pervasive Computing 7(1): 14–21

    Article  Google Scholar 

  30. Halperin, D. (2008). Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In IEEE symposium on security and privacy.

  31. http://www.medtronic.com/physician/crm_programmers/.

  32. http://www.cardiomems.com.

  33. Chen, S.-L., et al. (2007). A wireless body sensor network system for healthcare monitoring application. In IEEE Biomedical Circuits and Systems Conference (BIOCAS), pp. 243–246, Nov. 2007.

  34. Shankar, V., Natarajan, A., Gupta, S. K. S., & Schwiebert, L. (2001). Energy-efficient protocols for wireless communication in biosensor networks. PIMRC, pp. D-114–D-118.

  35. Personal conversation with practicing heart surgeon and professor, Dr. Egon Toft, of Aalborg University, Aalborg, Denmark 2008.

  36. Hao, Y., et al. (2006). Statistical and deterministic modelling of radio propagation channels in WBAN at 2.45 GHz. In Proceedings of the IEEE antennas and propagation society international symposium, Jul. 2006.

  37. Fort A. et al (2006) Ultra-wideband channel model for communication around the human body. IEEE Journal on Selected Areas in Communications 24(4): 927–933

    Article  Google Scholar 

  38. https://mentor.ieee.org/802.15/file/08/15-08-0780-04-0006-tg6-channel-model.pdf

  39. Aoyagi, T., et al. (2008). Channel model for wearable and implantable WBANs. IEEE 802.15-08-0416-04-0006, Nov. 2008.

  40. Kovacs, I. Z., Pedersen, G. F., Eggers, P. C. F., & Olesen, K. (2004). Ultra wideband radio propagation in body area network scenarios. In Proceedings of the ISSSTA.

  41. Hong Y. W., Scaglione A. (2006) Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks. IEEE Transactions on Wireless Communication 5(10): 2844–2855

    Article  Google Scholar 

  42. ETSI EN 301 839-1 v1.2.1. Technical report, ETSI.

  43. Støa, S., & Balasingham, I. (2008). A decentralized MAC layer protocol with periodic channel access for biomedical sensor networks. In First international Symposium on applied sciences in biomedical and communication technologies (ISABEL 2008), Aalborg, Denmark.

  44. Pagliari, R., Hong, Y.-W. P., & Scaglione, A. (2008).Pulse coupled oscillatorsć6 primitives for collision-free multiple access with application to body area networks. In First international symposium on applied sciences in biomedical and communication technologies (ISABEL 2008), Aalborg, Denmark

  45. Toh C.K. (2001) Maximum battery life routing to support ubiquitous mobile computing. IEEE Communications Magazine 39: 138–147

    Article  Google Scholar 

  46. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H., (2000). Energy-efficient communication protocols for wireless microsensor networks. In Proceedings of the Hawaaian international conference on systems science, Jan. 2000.

  47. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings of the IEEE Aerospace Conference.

  48. Moh, M., et al. (2005). On data gathering protocols for in-body biomedical sensor networks. In Proceedings of the IEEE GLOBECOM.

  49. Tang Q. et al (2005) Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Transactions on Biomedical Engineering 52(7): 1285–1294

    Article  Google Scholar 

  50. Braem, B., et al. (2006). The wireless autonomous spanning tree protocol for multihop wireless body area networks. In Proceedings of the third annual international conference on mobile and ubiquitous systems: Networking & services, Jul. 2006.

  51. Ren, H., Meng, M., & Chen, X. (2006). Cross-layer optimization schemes for wireless biosensor networks. In Proceedings of the 6th World Congress on Intelligent Control and Automation.

  52. Ren, H., Meng, M., & Chen, X. (2006). Developing a bioeffect metric for wireless biomedical sensor networks. In The sixth World Congress on Intelligent Control and Automation (WCICA).

  53. Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation—part i: System description, part ii: Implementation aspects and performance analysis. IEEE Transactions on Communication 51(11): 1927–1948

    Article  Google Scholar 

  54. Laneman J. N., Tse D., Wornell G. W. (2004) Cooperative diversitry in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions on Information Theory 50(12): 3063–3080

    Article  MathSciNet  Google Scholar 

  55. Rappaport, T. S. (2002). Wireless communications (2nd ed.). Prentice-Hall.

  56. IEEE 802.15.4, Wireless Medium Access Control (MAC) and Physical Layer (PHY) specications for Low-Rate Wireless Personalworks (LR-WPANS). Technical report, IEEE, Oct. 2003.

  57. IEEE p802.15.4a/d7, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specications for Low-Rate Wireless Personal Area Networks (LR-WPANS): Amendment to add alternate PHY. Technical report, IEEE, Jan. 2007.

  58. UWB Emission Limits. Technical report, FCC, Washington DC, USA, 2002.

  59. http://wireless.fcc.gov/services/index.htm?job=service_home&id=wireless_medical_telemetry.

  60. Medical, Health Care Drive Wireless Innovations. Technical report, Nikkei Electronics Asia, Jul. 2007.

  61. Chin, F., Zhi, W., & Ko, C.-C. (2003). System performance of IEEE 802.15.4 low rate wireless PAN using UWB as alternate-PHY layer. In Proceedings of 4th annual IEEE pervasive computing and communications workshops.

  62. Yu, H.-C., & Tseng, S.-M. (2007). A wireless based sensor for patient monitoring system with remote diagnostic. In Third International Conference on Networking and Services (ICNS), Jun. 2007.

  63. http://www.alivetec.com/pdf/heartmonitor_handout.pdf.

  64. HomeMed Systems Prsentation on Assisted Home Living, http://www.homemedsystems.com.

  65. Stefan, D. (2006). Tutorial on body area networks. Doc.: IEEE 802.15-06-0331, IEEE P802.15 working group for Wireless Personal Area Networks (WPANs).

  66. Furman S., Hayes D., Holmes D. (1993) Batteries for implantable biomedical applications. Futura, New York

    Google Scholar 

  67. Dai B., Urbas A., Lodder R. A. (2006) Prospects for implantable sensors powered by near infrared rechargable batteries. NIR 17(1): 4–15

    Google Scholar 

  68. Brümmer, H., & Günnewig, O. (2008). Failure and damage analysis of medical devices—investigations on active and passive implants. SGS Life Science Services.

  69. Mojarradi M. et al (2003) A miniaturized neuroprosthesis suitable for implantation into the brain. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(1): 38–42

    Article  Google Scholar 

  70. Zito, D., et al. (2008). Feasibility study and design of a wearable system-on-a-chip pulse radar for contactless cardiopulmonary monitoring. International Journal of Telemedicine and Applications.

  71. Molisch A. et al (2006) A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation 54(11): 3151–3166

    Article  Google Scholar 

  72. Ren, H., & Max, Q.-H. M. (2006). Bioeffects control in wireless biomedical sensor networks. In Proceedings of the SECON.

  73. Kailas, A., & Ingram, M. A. (2008). Transmit diversity for long-term body implants. In Proceedings of the 11th international symposium on Wireless Personal Multimedia Communications (WPMC), Sep. 8–11, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Kailas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kailas, A., Ingram, M.A. Wireless Aspects of Telehealth. Wireless Pers Commun 51, 673–686 (2009). https://doi.org/10.1007/s11277-009-9763-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-009-9763-7

Keywords

Navigation