Skip to main content

Advertisement

Log in

Space-Time Blind Multiuser Detection for Multiuser DS-CDMA and Oversampled Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Novel space-time blind multiuser detection method for multiuser DS-CDMA and oversampled systems is presented. To achieve signal recovery, Khatri-Rao product structure of the space-time channel matrix of received signals and rank-1 projection strategy are exploited. Two blind signal detection algorithms based on Khatri-Rao product decomposition are proposed. Uniqueness of the Khatri-Rao decomposition is discussed. Simulation results show that the proposed algorithms have performance close to the non-blind Zero Forcing algorithm and still work well in the case of only few antennae in the receiving end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A T :

Transpose of A

A H :

Conjugate transpose of A

diag([a, b . . .]):

Diagonal matrix with diagonal entries a, b, . . .

a(1 : I ):

A vector with a(1), . . . , a(I)

vec(A):

Stacks the columns of A in a vector

unvec(a, I, J):

Rearrange a IJ × 1 vector a to a I × J matrix, formulated as: unvec(a, I, J) = [a(1 : J), a(J + 1 : 2J), . . . , a((I−1)J : IJ)]

min(a, b):

The minimum value of a and b

max(a, b):

The maximum value of a and b

References

  1. Wang X., Host-Madsen A. (1999) Group-blind multiuser detection for uplink CDMA. IEEE Journal on Selected Areas in Communications 17: 1971–1984

    Article  Google Scholar 

  2. Buzzi S., Krishna-murthy V., Lops M., Poor H.V. (2003) Blind multiuser detection in multirate CDMA based on cyclic LMS adaptation. Wireless Personal Communications 27: 293–320

    Article  Google Scholar 

  3. Yu Q., Bi G., Zhang L. R. (2006) Blind multiuser detection for long code multipath DS-CDMA systems with Bayesian MC techniques. Wireless Personal Communications 39: 265–278

    Article  Google Scholar 

  4. Honing M., Madhow U., Verdu S. (1995) Blind adaptive multiuser detection. IEEE Transaction on Information Theory 41: 944–960

    Article  Google Scholar 

  5. Wang X., Poor H.V. (1998) Blind multiuser detection: A subspace approach. IEEE Transactions on Information Theory 44(2): 677–690

    Article  MathSciNet  MATH  Google Scholar 

  6. Fantacci R., Mancini L., Marini M., Tarchi D. (2003) A neural network-based blind multiuser receiver for DS-CDMA communication systems. Wireless Personal Communications 27: 195–273

    Article  Google Scholar 

  7. van der Veen A. J. (1998) Algebraic Methods for Deterministic Blind Beamforming. Proceedings of the IEEE 86(10): 1987–2008

    Article  Google Scholar 

  8. Cardoso J. F. (1998) Blind signal separation: Statistical principles. Proceedings of the IEEE 86(10): 2009–2025

    Article  Google Scholar 

  9. Choi S., Cichocki A., Park H.M., Lee S.Y. (2005) Blind source separation and independent component analysis: A review. Neural Information Processing-Letters and Reviews 6(1): 1–57

    Google Scholar 

  10. Chang A. C., Jen C. W. (2007) Complex-valued ICA utilizing signal-subspace demixing for robust DOA estimation and blind signal separation. Wireless Personal Communications 43: 1435–1450

    Article  Google Scholar 

  11. Talwar S., Viberg M., Paulraj A. (1996) Blind separation of synchronous CO-channel digital signals using an antenna array-part I: Algorithms. IEEE Transactions on Signal Processing 44(5): 1184–1197

    Article  Google Scholar 

  12. Manioudakis S. (2006) Blind estimation of space-time coded systems using the finite alphabet-constant modulus algorithm. IEE Proceedings-Vision Image Signal Process 153(5): 549–556

    Article  Google Scholar 

  13. van der Veen A. J., Paulraj A. (1996) An analytical constant modulus algorithm. IEEE Transactions On Signal Processing 44(5): 1136–1155

    Article  Google Scholar 

  14. Sansrimahachai P., Ward D. B., Constantinides A. G. (2005) Blind source separation of instantaneous MIMO systems based on the least-squares constant modulus algorithm. IEE Proceedings-Vision Image Signal Process 152(5): 616–622

    Article  Google Scholar 

  15. Krim H., Viberg M. (1996) Two decades of array signal processing research, The parametric approach. IEEE Signal Processing Magazine 13: 67–94

    Article  Google Scholar 

  16. Friedlander B. (1990) A sensitivity analysis of the MUSIC algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing 38: 1740–1751

    Article  Google Scholar 

  17. Soon V., Huang Y. F. (1992) An analysis of ESPRIT under random sensor uncertainties. IEEE Transactions On Signal Processing 40: 2353–2358

    Article  Google Scholar 

  18. Gaffar M. Y. A., Broadhurst A. D., Takawira F. (2005) Improved subspace-based channel estimation algorithm for DS/CDMA systems exploiting pulse-shaping information. IEE proceedings Communications 152(5): 533–540

    Article  Google Scholar 

  19. Sidiropoulos N. D., Giannakis G. B., Bro R. (2000) Blind PARAFAC receivers for DS-CDMA systems. IEEE Transactions on Signal Processing 48(3): 810–823

    Article  Google Scholar 

  20. Sidiropoulos N. D., Bro R (2000) On the uniqueness of multilinear decomposition of N-way arrays. Journal of Chemometrics 14: 229–239

    Article  Google Scholar 

  21. Zhang X. (2004) Matrix analysis and applications. Tsinghua University Press, Beijing, China, pp 354–355

    Google Scholar 

  22. Golub G. H., van Loan C. F. (1996) Matrix computation. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  23. Jiang T., Sidiropoulos N. D. (2004) Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints. IEEE Transactions On Signal Processing 52(9): 2625–2636

    Article  MathSciNet  Google Scholar 

  24. Gill P. E., Murray W., Wright M. H. (1981) Practical optimization. Academic Press, San Diego, CA

    MATH  Google Scholar 

  25. Kruskal J. B. (1977) Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Applications 18: 95–138

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Xu, Z.Z. & Lei, L. Space-Time Blind Multiuser Detection for Multiuser DS-CDMA and Oversampled Systems. Wireless Pers Commun 58, 759–783 (2011). https://doi.org/10.1007/s11277-009-9905-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-009-9905-y

Keywords