Skip to main content
Log in

Utility-Aware Cognitive Network Selections in Wireless Infrastructures

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Operators of wireless infrastructures should maintain their users “always-best-connected”. This concept means that applications should be offered to users at the best possible Quality of Service (QoS) level, taking into account profile, context and policy information. The profiles provide the user requirements and preferences, the terminal capabilities, and the application requirements. The policies provide the objectives, constraints imposed by various stakeholders, for instance the network operator (NO). The context of operation designates relevant applications, available networks and their QoS capabilities. The “always-best-connectivity” concept can be achieved by directing user terminals to the most appropriate networks of the heterogeneous infrastructure of the NO. In this respect, advanced terminal management functionality is required. This paper presents management mechanisms for utility-based cognitive network selections. The utility is used for expressing the user desire for a QoS level. Cognition mechanisms are applied for learning the QoS capabilities of candidate networks, and therefore increasing the reliability and seamlessness of the network selections. Extensive results are provided, which show the behaviour of the scheme in terms of network selections made, and computational effort required for the acquisition of the knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gustafsson E., Jonsson A.: Always best connected. IEEE Wireless Communications Magazine 10(1), 49–55 (2003)

    Article  Google Scholar 

  2. International Telecommunication Union. (2001). Telecommunications standardization bureau (ITU-T), communications quality of service: A framework and definitions, Recommendation G1000.

  3. International Telecommunications Union. (2003). Telecommunications standardization bureau (ITU-T), end-user multimedia QoS categories, Recommendation G1010.

  4. Wireless World Research Forum (WWRF). (2010). http://www.wireless-world-research.org.

  5. Project End-to-End Efficiency (E3). (2009). http://www.ict-e3.eu, 7th Framework Programme (FP7) of the European Commission, Information and Communication Technologies (ICT).

  6. Third (3rd) Generation Partnership Project (3GPP). (2010). Web site www.3gpp.org.

  7. Institute of Electrical and Electronics Engineers (IEEE). (2010). 802 Standards, www.ieee802.org.

  8. WiMAX Forum. (2010). http://www.wimaxforum.org.

  9. Stavroulaki V., Buljore S., Roux P., Melin E.: Equipment management issues in B3G end-to-end reconfigurable systems. IEEE Wireless Communications Magazine 13(3), 24–32 (2006)

    Article  Google Scholar 

  10. Demestichas, P., Katidiotis, A., Petromanolakis, D., & Stavroulaki, V. Management system for terminals in the wireless B3G world. Accepted for publication in the Wireless Personal Communications Journal.

  11. Song Q., Jamalipour A.: Network selection in integrated wireless LAN and UMTS environment using mathematical modelling and computing techniques. IEEE Wireless Communications Magazine 12(3), 42–48 (2005)

    Article  Google Scholar 

  12. Bari F., Leung V.: Automated network selection in a heterogeneous wireless network environment. IEEE Network 21(1), 34–40 (2007)

    Article  Google Scholar 

  13. Nguyen-Vuong Q. T., Agoulmine N., Ghamri-Doudane Y.: Terminal controlled mobility management in heterogeneous wireless networks. IEEE Communications Magazine 45(4), 122–129 (2007)

    Article  Google Scholar 

  14. Russell Stuart J., Norvig P.: Artificial intelligence: A modern approach. Prentice-Hall, New Jersey (2002)

    Google Scholar 

  15. Neapolitan, R. E. (2002). Learning Bayesian networks. Prentice Hall (series in artificial intelligence).

  16. Jensen F.: Bayesian networks and decision graphs. Springer, New York (2001)

    MATH  Google Scholar 

  17. Open Mobile Alliance (OMA.) (2010). http://www.openmobilealliance.org.

  18. Strassner J., Btrabsner J.: Policy-based network management: Solution for the next generation. Elsevier, Amsterdam (2003)

    Google Scholar 

  19. Von Neumann J., Morgenstern O.: Theory of games and economic behaviour. Wiley, New York (1944)

    Google Scholar 

  20. Fishburn P.: Utility theory for decision making. Robert E. Krieger Publishing Co, Huntington, NY (1970)

    MATH  Google Scholar 

  21. Mitola J., Maguire G. Q. Jr.: Cognitive radio: Making software radios more personal. IEEE Personal Communications 6(4), 13–18 (1999)

    Article  Google Scholar 

  22. Haykin S.: Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas In Communications 23(2), 201–220 (2005)

    Article  Google Scholar 

  23. Thomas R., Friend D., DaSilva L., McKenzie A.: Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine 44(12), 51–57 (2006)

    Article  Google Scholar 

  24. Kephart J., Chess D.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)

    Article  Google Scholar 

  25. Demestichas P., Boscovic D., Stavroulaki V., Lee A., Strassner J.: m@ANGEL: Autonomic management platform for seamless wireless cognitive connectivity. IEEE Communications Magazine 44(6), 118–127 (2006)

    Article  Google Scholar 

  26. Demestichas P., Dimitrakopoulos G., Strassner J., Bourse D.: Introducing reconfigurability and cognitive networks concepts in the wireless world: Research achievements and challenges. IEEE Vehicular Technology Magazine 1(2), 33–39 (2006)

    Google Scholar 

  27. (2007, August). Cognitive wireless networks. Special Issue in IEEE Wireless Communications Magazine, 14(4).

  28. Stavroulaki, V., Demestichas, P., Katidiotis, A., & Petromanolakis, D. (2007, June). Evolution in equipment management concepts: from reconfigurable to cognitive wireless terminals. In Proceedings of 16th IST mobile and wireless communications summit, Budapest, Hungary.

  29. Van Sinderen M. J., Van Halteren A. T., Wegdam M., Meeuwissen H. B., Eertink E. H.: Supporting context-aware mobile applications. IEEE Communications Magazine 44(9), 96–104 (2006)

    Article  Google Scholar 

  30. Bellavista P., Corradi A., Montanari R., Tononelli A.: Context-aware semantic discovery for next generation mobile systems. IEEE Communications Magazine 44(9), 62–71 (2006)

    Article  Google Scholar 

  31. Tsagkaris K, Tsagkaris A., Demestichas P.: Neural network-based learning schemes for cognitive radio systems. Computer Communications 31(14), 3394–3404 (2008)

    Article  Google Scholar 

  32. Demestichas P., Katidiotis A., Tsagkaris K., Adamopoulou E., Demestichas K.: Enhancing channel estimation in cognitive radio systems by means of Bayesian networks. Wireless Personal Communications Journal 49(1), 87–105 (2009)

    Article  Google Scholar 

  33. Liu X., Shankar N. S.: Sensing-based opportunistic channel access. Mobile Networks and Applications Journal 11(4), 577–591 (2006)

    Article  Google Scholar 

  34. Kim H., Shin K. G.: Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing 7(5), 533–545 (2008)

    Article  MathSciNet  Google Scholar 

  35. Perez-Romero, J., Sallent, O., Agusti, R., & Giupponi, L. (2007, April). A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In Proceedings of 2nd international symposium on new frontiers in dynamic spectrum access networks 2007 (DySPAN 2007), Dublin, Ireland.

  36. Nolan K., Doyle L.: Teamwork and collaboration in cognitive wireless networks. IEEE Wireless Communications Magazine 14(4), 22–27 (2007)

    Article  Google Scholar 

  37. Tirole J.: The theory of industrial organization. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  38. Katoozian M., Navaie K., Yanikomeroglu H.: Utility-based adaptive radio resource allocation in OFDM wireless networks with traffic prioritization. IEEE Transactions on Wireless Communications 8(1), 66–71 (2009)

    Article  Google Scholar 

  39. Koutsorodi A., Adamopoulou E., Demestichas K., Theologou M.: Service configuration and user profiling in 4G terminals. Wireless Personal Communications 43(4), 1303–1321 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Demestichas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavroulaki, V., Petromanolakis, D. & Demestichas, P. Utility-Aware Cognitive Network Selections in Wireless Infrastructures. Wireless Pers Commun 63, 1–30 (2012). https://doi.org/10.1007/s11277-010-0105-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0105-6

Keywords

Navigation